| 注册
首页|期刊导航|计算可视媒体(英文)|FastMAE:Efficient masked autoencoder with offline tokenizer

FastMAE:Efficient masked autoencoder with offline tokenizer

Meng-Hao Guo Chen Wang Wei Liu Shi-Min Hu

计算可视媒体(英文)2025,Vol.11Issue(3):483-496,14.
计算可视媒体(英文)2025,Vol.11Issue(3):483-496,14.DOI:10.26599/CVM.2025.9450474

FastMAE:Efficient masked autoencoder with offline tokenizer

FastMAE:Efficient masked autoencoder with offline tokenizer

Meng-Hao Guo 1Chen Wang 2Wei Liu 3Shi-Min Hu1

作者信息

  • 1. Department of Computer Science,Tsinghua University,Beijing 100084,China
  • 2. University of Pennsylvania,Philadelphia,PA 19104,USA
  • 3. Tencent Data Platform,Shenzhen 518057,China
  • 折叠

摘要

关键词

deep learning/computer vision/masked image modeling(MIM)

Key words

deep learning/computer vision/masked image modeling(MIM)

引用本文复制引用

Meng-Hao Guo,Chen Wang,Wei Liu,Shi-Min Hu..FastMAE:Efficient masked autoencoder with offline tokenizer[J].计算可视媒体(英文),2025,11(3):483-496,14.

基金项目

This work was supported by the National Science and Technology Major Project(Grant No.2021ZD0112902),the National Natural Science Foundation of China(Grant Nos.623B2057 and 62220106003),Tsinghua University Initiative Scientific Research Program,and Tsinghua-Tencent Joint Laboratory for Internet Innovation Technology.The authors sincerely appreciate the dedicated effort and valuable feedback from the anonymous reviewers and editor,which significantly improved the manuscript. (Grant No.2021ZD0112902)

计算可视媒体(英文)

访问量0
|
下载量0
段落导航相关论文