| 注册
首页|期刊导航|吉首大学学报(自然科学版)|高阶线性递推数列通项公式的矩阵方法推导

高阶线性递推数列通项公式的矩阵方法推导

费明兵 卓泽朋

吉首大学学报(自然科学版)2025,Vol.46Issue(5):1-4,18,5.
吉首大学学报(自然科学版)2025,Vol.46Issue(5):1-4,18,5.DOI:10.13438/j.cnki.jdzk.2025.05.001

高阶线性递推数列通项公式的矩阵方法推导

Derivation of the General Formula of Higher Order Linear Recursive Sequences by Using Matrix Methods

费明兵 1卓泽朋1

作者信息

  • 1. 淮北师范大学数学与统计学院,安徽淮北 235000
  • 折叠

摘要

Abstract

By introducing column vectors,the problem of finding the general term of a high-order linear recursive sequence is transformed into a problem of finding the power of a square matrix,and then the general term of a high-order linear recursive sequence is obtained by using the theory of Jordan's canoni-cal form with the theory of matrix representation between vectors.

关键词

高阶线性递推数列/通项/Jordan标准形

Key words

high order linear recursive sequence/general term/Jordan's canonical form

分类

数理科学

引用本文复制引用

费明兵,卓泽朋..高阶线性递推数列通项公式的矩阵方法推导[J].吉首大学学报(自然科学版),2025,46(5):1-4,18,5.

基金项目

安徽省高等学校省级质量工程项目(2021JXTD257,2022JYXM1410) (2021JXTD257,2022JYXM1410)

吉首大学学报(自然科学版)

1007-2985

访问量0
|
下载量0
段落导航相关论文