首页|期刊导航|清华大学学报自然科学版(英文版)|Evolution Strategies-Guided Deep Reinforcement Learning for Dynamic Hybrid Flow-Shop Scheduling Problem
清华大学学报自然科学版(英文版)2026,Vol.31Issue(1):125-141,17.DOI:10.26599/TST.2024.9010141
Evolution Strategies-Guided Deep Reinforcement Learning for Dynamic Hybrid Flow-Shop Scheduling Problem
Evolution Strategies-Guided Deep Reinforcement Learning for Dynamic Hybrid Flow-Shop Scheduling Problem
摘要
关键词
Hybrid Flow-shop Scheduling Problem(HFSP)/real-time scheduling/Deep Reinforcement Learning(DRL)/evolution strategies/intelligent manufacturing/multi-factoriesKey words
Hybrid Flow-shop Scheduling Problem(HFSP)/real-time scheduling/Deep Reinforcement Learning(DRL)/evolution strategies/intelligent manufacturing/multi-factories引用本文复制引用
Lin Luo,Xuesong Yan,Qinghua Wu,Victor S.Sheng..Evolution Strategies-Guided Deep Reinforcement Learning for Dynamic Hybrid Flow-Shop Scheduling Problem[J].清华大学学报自然科学版(英文版),2026,31(1):125-141,17.基金项目
This work was supported by the National Key Research and Development Program of China(No.2022YFB4501402),the Key Research and Development Program of Hubei Province(No.2023BAB065),and the National Natural Science Foundation of China(No.62073300). (No.2022YFB4501402)