首页|期刊导航|清华大学学报自然科学版(英文版)|A Deep Reinforcement Learning-Based Self-Repair Method for Solving the Agile Satellite Scheduling Problem
清华大学学报自然科学版(英文版)2026,Vol.31Issue(1):180-198,19.DOI:10.26599/TST.2024.9010164
A Deep Reinforcement Learning-Based Self-Repair Method for Solving the Agile Satellite Scheduling Problem
A Deep Reinforcement Learning-Based Self-Repair Method for Solving the Agile Satellite Scheduling Problem
摘要
关键词
Deep Reinforcement Learning(DRL)/Self Repair Process(SRP)/Agile Earth Observation Satellite(AEOS)/neural policy modelKey words
Deep Reinforcement Learning(DRL)/Self Repair Process(SRP)/Agile Earth Observation Satellite(AEOS)/neural policy model引用本文复制引用
Yahui Zuo,Ming Chen,Xiaolu Liu,Yonghao Du,Amr Qamar,Yuan Shang..A Deep Reinforcement Learning-Based Self-Repair Method for Solving the Agile Satellite Scheduling Problem[J].清华大学学报自然科学版(英文版),2026,31(1):180-198,19.基金项目
This work was supported by the National Natural Science Foundation of China(No.72201272),the Science and Technology Innovation Team of Shaanxi Province(No.2023-CX-TD-07),and the Key R&D Program Projects in Shaanxi Province(No.2024GH-ZDXM-48). (No.72201272)