| 注册
首页|期刊导航|水力发电|基于YOLOv8s的闸门水下淤堵物快速识别模型

基于YOLOv8s的闸门水下淤堵物快速识别模型

贾强强 贾骁男 何旺 朱延涛

水力发电2025,Vol.51Issue(12):45-49,69,6.
水力发电2025,Vol.51Issue(12):45-49,69,6.

基于YOLOv8s的闸门水下淤堵物快速识别模型

A YOLOv8s-Based Rapid Recognition Model for Underwater Siltation at Sluice Projects

贾强强 1贾骁男 2何旺 2朱延涛3

作者信息

  • 1. 长江勘测规划设计研究有限责任公司,湖北 武汉 430010
  • 2. 河海大学水利水电学院,江苏 南京 210024
  • 3. 河海大学水利水电学院,江苏 南京 210024||国家大坝安全工程技术研究中心,湖北 武汉 430010
  • 折叠

摘要

Abstract

Aiming to address the challenge of efficiently identifying underwater siltation,including objects like branches and stones with diverse shapes,a rapid identification model for underwater siltation near gates is proposed.The model is based on the YOLOv8s architecture and integrates FasterNet's efficient feature extraction module along with EMA's multi-scale attention mechanism.It also uses MPDIoU as the location loss function,replacing CIoU,to improve the detection of underwater siltation,such as branches and stones.Engineering case analysis shows that the proposed model achieves a precision of 0.821,a recall of 0.513,and a mAP50 of 0.627,effectively distinguishing underwater debris such as branches and rocks,and an FPS of 120.63 f/s,meeting the real-time requirements for underwater detection.

关键词

水闸工程/水下淤堵物/智能探测/YOLOv8

Key words

sluice project/underwater siltation/intelligent inspection/YOLOv8

分类

建筑与水利

引用本文复制引用

贾强强,贾骁男,何旺,朱延涛..基于YOLOv8s的闸门水下淤堵物快速识别模型[J].水力发电,2025,51(12):45-49,69,6.

基金项目

国家重点研发计划(2022YFC3005404) (2022YFC3005404)

国家自然科学基金资助项目(52309152,U23B20150) (52309152,U23B20150)

江苏省自然科学基金资助项目(BK20220978) (BK20220978)

国家大坝安全工程技术研究中心开放基金(CX2023B03) (CX2023B03)

水力发电

0559-9342

访问量0
|
下载量0
段落导航相关论文