| 注册
首页|期刊导航|物探化探计算技术|基于残差的CBAM-UNet地震数据高分辨处理

基于残差的CBAM-UNet地震数据高分辨处理

李云涛 徐明华 邓羽淇 陈磊 文晓涛

物探化探计算技术2025,Vol.47Issue(6):913-922,10.
物探化探计算技术2025,Vol.47Issue(6):913-922,10.DOI:10.12474/wthtjs.20241025-0005

基于残差的CBAM-UNet地震数据高分辨处理

High-resolution processing of CBAM-UNet seismic data based on residuals

李云涛 1徐明华 2邓羽淇 3陈磊 2文晓涛1

作者信息

  • 1. 成都理工大学地球物理学院,成都 610059||成都理工大学油气藏地质及开发工程重点实验室,成都 610059
  • 2. 川庆钻探工程公司地质勘探开发研究院,成都 610056
  • 3. 西安石油大学地球科学与工程学院,西安 710065
  • 折叠

摘要

Abstract

In oil and gas exploration,high-resolution seismic data is crucial.Traditional processing methods like deconvolution and inverse Q filtering are computationally complex due to their reliance on specific assumptions.Deep learning methods,which can automatically learn intricate features from data,have greatly improved the efficiency of high-resolution seismic data processing.However,the effectiveness of many current deep learning approaches in enhancing seismic resolution remains suboptimal.To address this,we have enhanced the U-Net model by integrating residual modules and Convolutional Block Attention Modules(CBAM).Adding residual modules enhances the model's ability to extract features and maintain training stability,while CBAM focuses the model on critical seismic data features,thus improving resolution.Tests on real-world seismic data show that this improved U-Net delivers superior results in high-resolution seismic data processing.

关键词

高分辨率/深度学习/残差模块/注意力

Key words

high resolution/deep learning/residual block/attention

分类

天文与地球科学

引用本文复制引用

李云涛,徐明华,邓羽淇,陈磊,文晓涛..基于残差的CBAM-UNet地震数据高分辨处理[J].物探化探计算技术,2025,47(6):913-922,10.

基金项目

四川省项目(2023ZYD0158) (2023ZYD0158)

中国海洋石油有限公司"十四五"重大科技项目(KJGG2022-0903) (KJGG2022-0903)

物探化探计算技术

1001-1749

访问量0
|
下载量0
段落导航相关论文