首页|期刊导航|大数据挖掘与分析(英文版)|Effectively Integrating CNN and Low-Complexity Transformer for Lung Cancer Tumor Prediction After Neoadjuvant Chemoimmunotherapy
大数据挖掘与分析(英文版)2025,Vol.8Issue(5):981-996,16.DOI:10.26599/BDMA.2024.9020088
Effectively Integrating CNN and Low-Complexity Transformer for Lung Cancer Tumor Prediction After Neoadjuvant Chemoimmunotherapy
Effectively Integrating CNN and Low-Complexity Transformer for Lung Cancer Tumor Prediction After Neoadjuvant Chemoimmunotherapy
摘要
关键词
lung cancer tumor prediction/neoadjuvant chemoimmunotherapy/hybrid convolutional neural network(CNN)and Transformer network/low-complexity self-attentionKey words
lung cancer tumor prediction/neoadjuvant chemoimmunotherapy/hybrid convolutional neural network(CNN)and Transformer network/low-complexity self-attention引用本文复制引用
Jiancun Zhou,Xianzhen Tan,Hulin Kuang,Jianxin Wang..Effectively Integrating CNN and Low-Complexity Transformer for Lung Cancer Tumor Prediction After Neoadjuvant Chemoimmunotherapy[J].大数据挖掘与分析(英文版),2025,8(5):981-996,16.基金项目
This work was supported in part by the National Key Research and Development Program of China(No.2021YFF1201200),the Science and Technology Innovation Program of Hunan Province(No.2022RC1031),the Natural Science Foundation of Hunan Province(No.2023JJ50354),the Scientific Research Project of Hunan Education Department(No.24A0575),and the High Performance Computing Center of Central South University. (No.2021YFF1201200)