| 注册
首页|期刊导航|电器与能效管理技术|基于ADKDE-LSTM的变电站短期负荷功率区间预测研究

基于ADKDE-LSTM的变电站短期负荷功率区间预测研究

包育德 邱润韬 许博智

电器与能效管理技术Issue(11):42-50,9.
电器与能效管理技术Issue(11):42-50,9.DOI:10.16628/j.cnki.2095-8188.2025.11.006

基于ADKDE-LSTM的变电站短期负荷功率区间预测研究

Research on Short-Term Load Power Interval Prediction for Substations Based on ADKDE-LSTM

包育德 1邱润韬 1许博智1

作者信息

  • 1. 广东电网广州供电局,广东 广州 510663
  • 折叠

摘要

Abstract

To address the challenges of poor nonlinear adaptability and inaccurate interval estimation in substation short-term load prediction,an interval prediction method integrating adaptive diffusion kernel density estimation(ADKDE)with long short-term memory networks(LSTM)is proposed.Historical load and meteorological data are fused,where ADKDE method analyzes error distributions and LSTM network temporal features to construct prediction intervals at a 95%confidence level.Experimental results based on a 220 kV substation dataset demonstrate that the proposed model achieves an average prediction interval coverage probability(PICP)of 0.914 across four datasets,while reducing the prediction interval average width(PIAW)by20%-30%compared to the comparison models.The proposed method effectively quantifies load uncertainty,providing reliable interval predictions to support power grid planning.

关键词

数据融合/ADKDE-LSTM/区间负荷预测/自适应扩散核密度估计

Key words

data fusion/ADKDE-LSTM/interval load prediction/adaptive diffusion kernel density estimation(ADKDE)

分类

信息技术与安全科学

引用本文复制引用

包育德,邱润韬,许博智..基于ADKDE-LSTM的变电站短期负荷功率区间预测研究[J].电器与能效管理技术,2025,(11):42-50,9.

基金项目

国家自然科学基金资助项目(52307080) (52307080)

电器与能效管理技术

2095-8188

访问量0
|
下载量0
段落导航相关论文