| 注册
首页|期刊导航|高师理科学刊|一类几何流方程的解

一类几何流方程的解

曹田田 王贝贝

高师理科学刊2025,Vol.45Issue(11):21-28,8.
高师理科学刊2025,Vol.45Issue(11):21-28,8.DOI:10.3969/j.issn.1007-9831.2025.11.005

一类几何流方程的解

Solution of a class of geometric flow equations

曹田田 1王贝贝1

作者信息

  • 1. 华北水利水电大学 数学与统计学院,河南 郑州 450046
  • 折叠

摘要

Abstract

The existence problem of classical solutions for a class of geometric flow equations in hyperbolic mean curvature flow is studied.The system of equations is strictly hyperbolic and not truly nonlinear in the Lax sense.By introducing appropriate Riemann invariants,the original equation is transformed into a diagonal first-order quasi linear hyperbolic equation system.The conditions for the initial values of the equation to be satisfied when a classical solution exists are given,and brief conclusions are drawn on the existence of weak and periodic solutions.

关键词

平均曲率流/几何流方程/经典解/黎曼不变量

Key words

average curvature flow/geometric flow equation/classical solution/Riemann invariants

分类

数理科学

引用本文复制引用

曹田田,王贝贝..一类几何流方程的解[J].高师理科学刊,2025,45(11):21-28,8.

高师理科学刊

1007-9831

访问量0
|
下载量0
段落导航相关论文