高师理科学刊2025,Vol.45Issue(11):21-28,8.DOI:10.3969/j.issn.1007-9831.2025.11.005
一类几何流方程的解
Solution of a class of geometric flow equations
曹田田 1王贝贝1
作者信息
- 1. 华北水利水电大学 数学与统计学院,河南 郑州 450046
- 折叠
摘要
Abstract
The existence problem of classical solutions for a class of geometric flow equations in hyperbolic mean curvature flow is studied.The system of equations is strictly hyperbolic and not truly nonlinear in the Lax sense.By introducing appropriate Riemann invariants,the original equation is transformed into a diagonal first-order quasi linear hyperbolic equation system.The conditions for the initial values of the equation to be satisfied when a classical solution exists are given,and brief conclusions are drawn on the existence of weak and periodic solutions.关键词
平均曲率流/几何流方程/经典解/黎曼不变量Key words
average curvature flow/geometric flow equation/classical solution/Riemann invariants分类
数理科学引用本文复制引用
曹田田,王贝贝..一类几何流方程的解[J].高师理科学刊,2025,45(11):21-28,8.