| 注册
首页|期刊导航|计算机工程与应用|心律失常和心肌梗死诊断中心电图智能分析方法研究综述

心律失常和心肌梗死诊断中心电图智能分析方法研究综述

韩闯 范宝骐 余梦瑶 阙文戈

计算机工程与应用2025,Vol.61Issue(23):59-71,13.
计算机工程与应用2025,Vol.61Issue(23):59-71,13.DOI:10.3778/j.issn.1002-8331.2503-0022

心律失常和心肌梗死诊断中心电图智能分析方法研究综述

Review of Intelligent Analysis Methods for Electrocardiograms in Diagnosis of Arrhythmia and Myocardial Infarction

韩闯 1范宝骐 1余梦瑶 1阙文戈2

作者信息

  • 1. 郑州轻工业大学 计算机科学与技术学院,郑州 450000
  • 2. 清华大学 自动化系,北京 100084
  • 折叠

摘要

Abstract

Electrocardiogram(ECG)remains the gold standard for diagnosing arrhythmia and myocardial infarction(MI),offering advantages such as non-invasiveness,real-time monitoring,and portability,making it widely used in clinical prac-tice.Research on intelligent analysis of ECG for these conditions holds great significance.Firstly,this paper introduces commonly used ECG databases for arrhythmia and MI.Then it reviews recent advances in ECG intelligent analysis over the past three years,including manual feature extraction,convolutional neural networks and their variants,graph neural networks,self-supervised learning,federated learning,active learning,deterministic learning,and generative model.Subsequently,it conducts an in-depth analysis of these methodologies from perspectives including data scale,classifica-tion patterns,model comparisons,and model complexity.The study compares the requirements,advantages,disadvantages,interpretability,and application scenarios of different approaches.Finally,it summarizes existing limitations in areas such as data quality and imbalance issues,conflicts between model generalizability and interpretability,trade-offs between privacy protection and collaborative efficiency,mismatches between computational resources and clinical deployment.Feasible solutions are proposed to address these challenges.

关键词

心电图(ECG)/心律失常(MI)/心肌梗死/智能诊断/深度学习

Key words

electrocardiogram(ECG)/myocardial infarction(MI)/arrhythmia/intelligent diagnosis/deep learning

分类

信息技术与安全科学

引用本文复制引用

韩闯,范宝骐,余梦瑶,阙文戈..心律失常和心肌梗死诊断中心电图智能分析方法研究综述[J].计算机工程与应用,2025,61(23):59-71,13.

基金项目

国家自然科学基金青年项目(62303427) (62303427)

河南省科技攻关项目(242102211018) (242102211018)

中原科技创新青年拔尖人才项目. ()

计算机工程与应用

OA北大核心

1002-8331

访问量0
|
下载量0
段落导航相关论文