| 注册
首页|期刊导航|机械与电子|基于隐式神经网络的超声图像重建方法

基于隐式神经网络的超声图像重建方法

郭孜文 付庄 张志谊

机械与电子2025,Vol.43Issue(11):3-7,14,6.
机械与电子2025,Vol.43Issue(11):3-7,14,6.

基于隐式神经网络的超声图像重建方法

Implicit Neural Representation-based Ultrasound Image Reconstruction

郭孜文 1付庄 1张志谊1

作者信息

  • 1. 上海交通大学机械与动力工程学院,上海 200240
  • 折叠

摘要

Abstract

To address the challenges of traditional 2D ultrasound in representing 3D tissue structures and its dependence on probe angles and limited physical modeling,this paper proposes a 3D reconstruction method combining implicit neural networks with ultrasound imaging models.By constructing an MLP net-work with spatial coordinates as input,it predicts physical properties of the medium and enhances high-frequency detail expression through positional encoding.The integration of energy attenuation,reflection,and scattering modeling improves the realism and clarity of images from new viewpoints.Experimental re-sults show that this method outperforms traditional voxel interpolation and NeRF in SSIM,LPIPS and PSNR,significantly enhancing structural fidelity and visual quality.

关键词

超声成像/隐式神经网络/神经辐射场/体积渲染

Key words

ultrasound imaging/implicit neural representation/neural radiance field/volume rendering

分类

信息技术与安全科学

引用本文复制引用

郭孜文,付庄,张志谊..基于隐式神经网络的超声图像重建方法[J].机械与电子,2025,43(11):3-7,14,6.

基金项目

医工交叉项目(YG2019ZDA17,ZH2018QNB23) (YG2019ZDA17,ZH2018QNB23)

国家自然科学基金面上项目(61973210) (61973210)

机械与电子

1001-2257

访问量0
|
下载量0
段落导航相关论文