| 注册
首页|期刊导航|机械与电子|基于改进YOLOv11的复杂环境下火焰目标检测

基于改进YOLOv11的复杂环境下火焰目标检测

郭庆 陈川 季强东 权晓柯 易灿灿

机械与电子2025,Vol.43Issue(11):33-39,7.
机械与电子2025,Vol.43Issue(11):33-39,7.

基于改进YOLOv11的复杂环境下火焰目标检测

Flame Target Detection in Complex Environments Based on Improved YOLOv11

郭庆 1陈川 1季强东 1权晓柯 1易灿灿2

作者信息

  • 1. 格林美(武汉)城市矿山产业集团有限公司,湖北 武汉 431411
  • 2. 武汉科技大学机械工程学院,湖北 武汉 430081
  • 折叠

摘要

Abstract

To address the real-time and accuracy demands of flame target detection in complex envi-ronments,this study proposes an enhanced YOLOv11 flame detection model.In terms of model optimiza-tion,the C3k2_Ghost module is introduced to reduce computational complexity,and a Feature Refinement Module(FRM)is designed to enhance multi-scale feature representation.Furthermore,the SEAM atten-tion mechanism is employed to optimize detection performance in occlusion scenarios,and an additional de-tection layer at 160×160 is incorporated to improve the ability to capture fine details.Experimental results based on a dataset of 4 653 flame images demonstrate that the improved model achieves a mean Average Precision(mAP)of 86.1%,a recall rate of 84.3%,and a detection speed of 64.1 FPS,significantly outper-forming mainstream models such as YOLOv11 and YOLOv8 in both accuracy and efficiency.The results indicate that the proposed model effectively balances lightweight design and feature representation capabili-ties,providing an efficient solution for real-time fire hazard warning in complex industrial scenarios.

关键词

深度学习/目标检测/YOLO模型/多尺度特征/注意力机制

Key words

deep learning/target detection/YOLO model/multi-scale features/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

郭庆,陈川,季强东,权晓柯,易灿灿..基于改进YOLOv11的复杂环境下火焰目标检测[J].机械与电子,2025,43(11):33-39,7.

基金项目

国家自然科学基金资助项目(51805382) (51805382)

湖北省应急管理厅安全生产专项资金科技项目(GEM-CK-JS-2023033101) (GEM-CK-JS-2023033101)

机械与电子

1001-2257

访问量0
|
下载量0
段落导航相关论文