| 注册
首页|期刊导航|人民珠江|基于积分时滞启发的深度学习水位预测模型

基于积分时滞启发的深度学习水位预测模型

罗玮 吴佳豪 陈灵强 郑钧 雷晓辉 王立志 谭敏 许江涛

人民珠江2025,Vol.46Issue(11):91-99,9.
人民珠江2025,Vol.46Issue(11):91-99,9.DOI:10.3969/j.issn.1001-9235.2025.11.011

基于积分时滞启发的深度学习水位预测模型

Deep Learning-Based Water Level Prediction Model Inspired by Integrator Delay

罗玮 1吴佳豪 2陈灵强 2郑钧 3雷晓辉 4王立志 5谭敏 5许江涛3

作者信息

  • 1. 清华大学土木水利学院,北京 100084||国家能源集团大数据服务有限公司,四川 成都 610016
  • 2. 河北工程大学信息与电气工程学院,河北 邯郸 056038
  • 3. 中国南水北调集团水网智慧科技有限公司,北京 102308
  • 4. 河北工程大学水利水电工程学院,河北 邯郸 056038
  • 5. 国家能源集团大数据服务有限公司,四川 成都 610016
  • 折叠

摘要

Abstract

Accurate water level prediction plays a key role in the safe operation of hydropower stations and is an important guarantee for improving power generation efficiency.The traditional deep learning method has limitations in dealing with the complex dynamics and time-delay characteristics of hydrological systems.It is difficult to capture the subtle changes and long-term and short-term dependencies in nonlinear hydrological processes,and its prediction accuracy cannot be guaranteed.Therefore,this study proposed a physically inspired hydraulic prediction model(PHM)to predict the water level in front of the single-channel pool dam of the Dadu River.The model deeply explored the internal mechanism of the physically inspired integrator delay model,mining the long-term dependence and short-term attribute correlation in hydrological data,effectively overcoming the problem of the deep learning model's insufficient ability to estimate time delay dynamics,and improving the accuracy of prediction results.In this paper,we used the real data of the Dadu River.Through a large number of experiments,it is proven that compared with the existing models,PHM has a significant reduction in the three key indicators of mean absolute error(MAE),root mean square error(RMSE),and mean absolute percentage error(MAPE).The average reduction of MAE is 43.2%;the average reduction of MAPE is 42.9%,and the average reduction of RMSE is 52.3%.The experimental results show that the model is more practical and reliable than the existing models in different scenarios.

关键词

积分时滞/水位预测/深度学习/物理启发/单渠池

Key words

integrator delay/water level prediction/deep learning/physical inspiration/single-channel reservoir

分类

建筑与水利

引用本文复制引用

罗玮,吴佳豪,陈灵强,郑钧,雷晓辉,王立志,谭敏,许江涛..基于积分时滞启发的深度学习水位预测模型[J].人民珠江,2025,46(11):91-99,9.

基金项目

河北省自然科学基金资助(E2024402142) (E2024402142)

人民珠江

1001-9235

访问量0
|
下载量0
段落导航相关论文