| 注册
首页|期刊导航|上海管理科学|基于BP神经网络的林业生物量预测

基于BP神经网络的林业生物量预测

曹泽康 丁宁

上海管理科学2025,Vol.47Issue(6):51-56,6.
上海管理科学2025,Vol.47Issue(6):51-56,6.

基于BP神经网络的林业生物量预测

Forest Biomass Prediction Based on BP Neural Network

曹泽康 1丁宁2

作者信息

  • 1. 浙江工业大学 经济学院,杭州 310023
  • 2. 杭州电子科技大学 理学院,杭州 310018
  • 折叠

摘要

Abstract

Climate warming has become a hot issue in today's world,and forestry carbon sinks have at-tracted much attention because of their potential in maintaining global climate stability.Forestry car-bon sequestration refers to the preservation of CO2 in the air in plants and soil,and the absorption of forest to reduce the concentration of CO2 in the air.The key of forest carbon sink research is whether the estimation of forest biomass and forest carbon sink is accurate and fast.In this paper,BP neural network is used to estimate forest biomass.Seven parameters,such as DBH,tree height,altitude,soil type,slope direction,slope and geographical location,were taken as input layer parameters.Meanwhile,there were 448 nodes in the hidden layer of the model,and the variables in the output layer were above-ground biomass and subsurface biomass.A program is written to train the model on the Python software platform,and the BP neural network model is optimized internally.The R2 of the final model is 0.9992 when estimating above-ground biomass and 0.9829 when estimating subsur-face biomass,which is more accurate than the traditional binary regression model.

关键词

BP神经网络/模型/林业碳汇/地上生物量

Key words

BP neural network/the model/forestry carbon sink/aboveground biomass

分类

农业科技

引用本文复制引用

曹泽康,丁宁..基于BP神经网络的林业生物量预测[J].上海管理科学,2025,47(6):51-56,6.

基金项目

浙江省自然科学基金白马湖实验室区域创新发展联合基金资助项目(LBMHY24E060014) (LBMHY24E060014)

上海管理科学

1005-9679

访问量0
|
下载量0
段落导航相关论文