| 注册
首页|期刊导航|数据采集与处理|基于深度学习的阵列天线自适应波束形成研究综述

基于深度学习的阵列天线自适应波束形成研究综述

许峥 潘子豪 王宁 郭道省

数据采集与处理2025,Vol.40Issue(6):1382-1411,30.
数据采集与处理2025,Vol.40Issue(6):1382-1411,30.DOI:10.16337/j.1004-9037.2025.06.002

基于深度学习的阵列天线自适应波束形成研究综述

Review on Deep Learning-Based Adaptive Beamforming for Array Antennas

许峥 1潘子豪 2王宁 2郭道省2

作者信息

  • 1. 中国人民解放军陆军工程大学通信工程学院,南京 210001||南京熊猫汉达科技有限公司,南京 210001
  • 2. 中国人民解放军陆军工程大学通信工程学院,南京 210001
  • 折叠

摘要

Abstract

With the increasing of array antennas and the growing complexity of anti-jamming,traditional adaptive beamforming methods often suffer from high computational complexity.Deep learning,with its powerful data-driven capabilities,offers a novel approach to overcoming the performance bottlenecks of traditional adaptive beamforming.This paper provides a systematic review on current studies and development trends of deep learning in array antenna beamforming.First,we revisit the evolution of traditional beamforming algorithms,ranging from the Howells-Applebaum adaptive processor to robust beamforming based on convex optimization.Second,we analyze the innovative applications of deep learning models such as convolutional neural networks(CNNs),recurrent neural networks(RNNs),and long short-term memory(LSTM)networks in beamforming.This review demonstrates that deep learning methods exhibit significant advantages in improving system performance due to their powerful nonlinear modeling capabilities,end-to-end optimization characteristics,and environmental adaptability.Specifically,in mobile communications,deep learning-based beamforming methods substantially enhance the computational efficiency and environmental adaptability of massive multiple input multiple output(MIMO)systems.In radar signal processing,deep learning models effectively improve anti-jamming performance and target detection accuracy.In acoustic signal processing,deep neural networks enable more precise sound source localization and noise suppression.Finally,this paper explores future research directions,including network architecture innovation,real-time processing optimization,robustness enhancement,cross-scenario transfer learning,theoretical foundation deepening,and novel application expansion.

关键词

波束形成/深度学习/神经网络/阵列信号处理

Key words

beamforming/deep learning/neural networks/array signal processing

分类

信息技术与安全科学

引用本文复制引用

许峥,潘子豪,王宁,郭道省..基于深度学习的阵列天线自适应波束形成研究综述[J].数据采集与处理,2025,40(6):1382-1411,30.

数据采集与处理

OA北大核心

1004-9037

访问量0
|
下载量0
段落导航相关论文