| 注册
首页|期刊导航|厦门大学学报(自然科学版)|基于改进YOLOv8的SAR图像智能识别方法

基于改进YOLOv8的SAR图像智能识别方法

闫晨宇 耿亮 杜伟伟

厦门大学学报(自然科学版)2025,Vol.64Issue(6):949-957,9.
厦门大学学报(自然科学版)2025,Vol.64Issue(6):949-957,9.DOI:10.6043/j.issn.0438-0479.202506008

基于改进YOLOv8的SAR图像智能识别方法

SAR image intelligent recognition method based on improved YOLOv8

闫晨宇 1耿亮 1杜伟伟2

作者信息

  • 1. 北方自动控制技术研究所,山西 太原 030006
  • 2. 北方自动控制技术研究所,山西 太原 030006||智能信息控制技术山西省重点实验室,山西 太原 030006
  • 折叠

摘要

Abstract

[Objective]Due to the fact that synthetic aperture radar(SAR)images are sensitive to shooting angles and target postures,it is difficult for the model to distinguish targets in SAR images.In this article,we propose an SAR image vehicle target intelligent recognition model DCF-SAR based on YOLOv8.[Method]First,in the model,a deformable convolutional network(DCN)module is introduced to enhance its ability to recognize deformed targets.Second,by introducing the content-aware reassembly of features(CARAFE)upsampling module,the efficiency of the model in the feature fusion stage can be improved.Finally,for the purpose of further enhancing the training efficiency and feature extraction ability of the model,the Focal loss function is used to improve the cross entropy classification loss function of the original model,so that the classification accuracy of the model and its attention to the target area can be improved.[Results]Experimental results on the MSTAR dataset show that the DCF-SAR model achieves a recognition accuracy of 98.79%on the extend operating condition(EOC)dataset with large depression angle variations,which is 0.12 percentage points higher than the original model.On the standard operating condition(SOC)dataset with only azimuth angle variations and at 1/12 the scale,it achieves a recognition accuracy of 89.13%,significantly improving the original model by 10.98 percentage points.[Conclusion]The DCF-SAR model is not only suitable for scenarios with large depression angle variations but also demonstrates outstanding performance on small-scale datasets with limited azimuth angle changes.

关键词

合成孔径雷达/可变形卷积网络/内容感知特征重组/Focal损失函数

Key words

synthetic aperture radar/deformable convolutional network/content-aware reassembly of features/Focal loss function

分类

信息技术与安全科学

引用本文复制引用

闫晨宇,耿亮,杜伟伟..基于改进YOLOv8的SAR图像智能识别方法[J].厦门大学学报(自然科学版),2025,64(6):949-957,9.

基金项目

陆军装备部"十四五"预先研究基金资助项目(804) (804)

厦门大学学报(自然科学版)

OA北大核心

0438-0479

访问量0
|
下载量0
段落导航相关论文