| 注册
首页|期刊导航|自动化学报|独立慢特征分析建模方法及其在动态故障检测中的应用

独立慢特征分析建模方法及其在动态故障检测中的应用

张晨 孔祥玉 胡昌华

自动化学报2025,Vol.51Issue(11):2520-2533,14.
自动化学报2025,Vol.51Issue(11):2520-2533,14.DOI:10.16383/j.aas.c250134

独立慢特征分析建模方法及其在动态故障检测中的应用

Independent-Slow Feature Analysis Modelling Method and Its Application in Dynamic Fault Detection

张晨 1孔祥玉 1胡昌华1

作者信息

  • 1. 火箭军工程大学导弹工程学院 西安 710025
  • 折叠

摘要

Abstract

Fault detection and diagnosis technologies serve as critical technical supports and effective means to ensure the normal operation of complex equipment or industrial processes.As a typical multivariate statistical process monitoring method,independent component analysis(ICA)can fully exploit high-order statistical informa-tion from data.Conventional ICA methods employ principal component analysis(PCA)for whitening and dimen-sionality reduction during the pre-processing stage.However,the static nature of PCA compromises ICA's effective-ness in dynamic process monitoring.To address this issue,an independent-slow feature analysis modelling method is approached.Specifically,ISFA constructs a dual-objective optimization function using the original observation mat-rix and whitening matrix as independent variables,solves the objective function via Newton's iteration method,op-timizes weight coefficients through grid search,modifies statistical metrics using exponentially weighted moving av-erage,and establishes a comprehensive detection index.Finally,numerical simulations and electric servo mechan-ism experiments are conducted to validate the effectiveness of the proposed method.

关键词

独立慢特征/动态过程/故障检测/网格搜索

Key words

Independent-slow feature/dynamic process/fault detection/grid search

引用本文复制引用

张晨,孔祥玉,胡昌华..独立慢特征分析建模方法及其在动态故障检测中的应用[J].自动化学报,2025,51(11):2520-2533,14.

基金项目

国家自然科学基金(62273354,62227814)资助Supported by National Natural Science Foundation of China(62273354,62227814) (62273354,62227814)

自动化学报

OA北大核心

0254-4156

访问量0
|
下载量0
段落导航相关论文