| 注册
首页|期刊导航|钻井液与完井液|基于长短期记忆网络和随机森林的井漏预测

基于长短期记忆网络和随机森林的井漏预测

蔡艾廷 苏俊霖 戴昆 赵晗 王嘉义

钻井液与完井液2025,Vol.42Issue(6):772-780,9.
钻井液与完井液2025,Vol.42Issue(6):772-780,9.DOI:10.12358/j.issn.1001-5620.2025.06.009

基于长短期记忆网络和随机森林的井漏预测

Lost Circulation Prediction Based on Long Short-Term Memory Network and Random Forest Algorithm

蔡艾廷 1苏俊霖 2戴昆 3赵晗 3王嘉义3

作者信息

  • 1. 西南石油大学石油与天然气工程学院,成都 610500
  • 2. 西南石油大学石油与天然气工程学院,成都 610500||西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
  • 3. 中国石油天然气集团川庆钻探工程有限公司页岩气勘探开发项目经理部,成都 610051
  • 折叠

摘要

Abstract

Lost circulation is one of the key factors restricting drilling safety and efficiency.To realize accurate prediction of lost circulation,a hybrid model for the prediction of lost circulation is presented based on long short-term memory(LSTM)and random forest(RF)algorithm.The LSTM model,the RF model and the LSTM-RF hybrid model are constructed based on algorithm principle.Fourteen lost circulation characteristic parameters are selected using correlation analysis method,and are input into three lost circulation prediction models for training.The performance and lost circulation prediction accuracy of the three models are then analyzed and compared.The experimental results show that the root mean square error(RMSE)of the hybrid model on the test dataset is 0.11,the mean absolute error(MAE)is 0.22,the coefficient of determination(R2)is 0.95,and the overall accuracy reaches 84.2%,each indicator is better than that of the single model.Furthermore,hybrid model has successfully predicted 5 times of lost circulation in field application.The results of this study show that LSTM-RF hybrid model is a model with optimal comprehensive performance in lost circulation prediction,it can predict lost circulation more precisely,and can provide reference for the prevention of lost circulation and for the decision making in drilling operation.

关键词

井漏预测/特征参数/长短期记忆网络/随机森林/混合模型

Key words

Lost circulation prediction/Characteristic parameter/Long short-term memory network/Random forest/Hybrid model

分类

能源科技

引用本文复制引用

蔡艾廷,苏俊霖,戴昆,赵晗,王嘉义..基于长短期记忆网络和随机森林的井漏预测[J].钻井液与完井液,2025,42(6):772-780,9.

基金项目

中国石油-西南石油大学创新联合体科技合作项目"降低长水平段井下复杂与事故的配套技术"(2020CX040201). (2020CX040201)

钻井液与完井液

OA北大核心

1001-5620

访问量0
|
下载量0
段落导航相关论文