| 注册
首页|期刊导航|郑州大学学报(理学版)|Informer-LSTM融合算法在蓝莓基质温湿度预测中的研究与应用

Informer-LSTM融合算法在蓝莓基质温湿度预测中的研究与应用

胡玲艳 陈鹏宇 郭占俊 徐国辉 秦山 付康 盖荣丽 汪祖民 张雨萌

郑州大学学报(理学版)2026,Vol.58Issue(1):78-86,9.
郑州大学学报(理学版)2026,Vol.58Issue(1):78-86,9.DOI:10.13705/j.issn.1671-6841.2024109

Informer-LSTM融合算法在蓝莓基质温湿度预测中的研究与应用

Research and Application of Informer-LSTM Fusion Algorithm in Temperature and Humidity Prediction of Blueberry Substrate

胡玲艳 1陈鹏宇 1郭占俊 2徐国辉 1秦山 2付康 1盖荣丽 1汪祖民 1张雨萌1

作者信息

  • 1. 大连大学 信息工程学院 辽宁 大连 116622
  • 2. 大连市现代农业生产发展服务中心 辽宁 大连 116021
  • 折叠

摘要

Abstract

To predict the temperature and humidity changes of blueberry substrate in greenhouses accu-rately,a prediction method combined Informer-LSTM algorithms was proposed for blueberry substrate temperature and humidity.Taking on-site environmental data from blueberry greenhouses as the research object,the LSTM algorithm captured the dependent relationships of time series data.It was combined with self-attention mechanisms to dynamically adjust attention weights.It enabled the model to focus on both its own attention features and LSTM features simultaneously,and the model′s memory capacity was enhanced.After initial sequence generation,the LSTM algorithm was again applied to correct the short-term attention of the model,improving its reaction speed.Experimental results demonstrated that the In-former-LSTM prediction model showed significant advantages in terms of prediction accuracy,robustness,and response speed.When sequential input data such as temperature and humidity changes significantly,the dynamic pattern changes within short-term input data were captured quickly.This model had strong practical value for assisting human decision-making and achieving intelligent control in smart greenhouse management.

关键词

智慧农业/温室蓝莓/Informer模型/LSTM模型/温湿度预测

Key words

smart agriculture/greenhouse blueberries/Informer model/LSTM model/temperature and humidity prediction

分类

信息技术与安全科学

引用本文复制引用

胡玲艳,陈鹏宇,郭占俊,徐国辉,秦山,付康,盖荣丽,汪祖民,张雨萌..Informer-LSTM融合算法在蓝莓基质温湿度预测中的研究与应用[J].郑州大学学报(理学版),2026,58(1):78-86,9.

基金项目

辽宁省科技计划重点项目(2022020655-JH1/109) (2022020655-JH1/109)

大连市科技创新基金项目(2022JJ12SN052) (2022JJ12SN052)

郑州大学学报(理学版)

1671-6841

访问量0
|
下载量0
段落导航相关论文