| 注册
首页|期刊导航|Computational Visual Media|PASS-SAM:Integration of Segment Anything Model for Large-Scale Unsupervised Semantic Segmentation

PASS-SAM:Integration of Segment Anything Model for Large-Scale Unsupervised Semantic Segmentation

Yin Tang Rui Chen Gensheng Pei Qiong Wang

Computational Visual Media2025,Vol.11Issue(3):P.669-674,6.
Computational Visual Media2025,Vol.11Issue(3):P.669-674,6.DOI:10.26599/CVM.2025.9450432

PASS-SAM:Integration of Segment Anything Model for Large-Scale Unsupervised Semantic Segmentation

Yin Tang 1Rui Chen 1Gensheng Pei 1Qiong Wang1

作者信息

  • 1. School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing,China
  • 折叠

摘要

关键词

segmentation performance/amalgamates benefits various models/segment anything model/pass sam model/segment similar areas/large scale unsupervised semantic segmentation

分类

信息技术与安全科学

引用本文复制引用

Yin Tang,Rui Chen,Gensheng Pei,Qiong Wang..PASS-SAM:Integration of Segment Anything Model for Large-Scale Unsupervised Semantic Segmentation[J].Computational Visual Media,2025,11(3):P.669-674,6.

Computational Visual Media

2096-0433

访问量0
|
下载量0
段落导航相关论文