Computational Visual Media2025,Vol.11Issue(3):P.669-674,6.DOI:10.26599/CVM.2025.9450432
PASS-SAM:Integration of Segment Anything Model for Large-Scale Unsupervised Semantic Segmentation
Yin Tang 1Rui Chen 1Gensheng Pei 1Qiong Wang1
作者信息
- 1. School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing,China
- 折叠
摘要
关键词
segmentation performance/amalgamates benefits various models/segment anything model/pass sam model/segment similar areas/large scale unsupervised semantic segmentation分类
信息技术与安全科学引用本文复制引用
Yin Tang,Rui Chen,Gensheng Pei,Qiong Wang..PASS-SAM:Integration of Segment Anything Model for Large-Scale Unsupervised Semantic Segmentation[J].Computational Visual Media,2025,11(3):P.669-674,6.