| 注册
首页|期刊导航|International Journal of Transportation Science and Technology|Identifying the key factors of intermodal travel using interpretative ensemble learning

Identifying the key factors of intermodal travel using interpretative ensemble learning

Jianhong Ye Lei Gao Jihao Deng

International Journal of Transportation Science and Technology2025,Vol.19Issue(3):P.223-239,17.
International Journal of Transportation Science and Technology2025,Vol.19Issue(3):P.223-239,17.DOI:10.1016/j.ijtst.2024.09.004

Identifying the key factors of intermodal travel using interpretative ensemble learning

Jianhong Ye 1Lei Gao 1Jihao Deng2

作者信息

  • 1. Key Laboratory of Road and Traffic Engineering of Ministry of Education,Tongji University,Shanghai 201804,China
  • 2. Department of Civil and Mineral Engineering,University of Toronto,Toronto M5S1A4,Ontario,Canada
  • 折叠

摘要

关键词

Interpretable machine learning(ML)/Ensemble learning/Intermodal travel/Impact factor identification

分类

交通工程

引用本文复制引用

Jianhong Ye,Lei Gao,Jihao Deng..Identifying the key factors of intermodal travel using interpretative ensemble learning[J].International Journal of Transportation Science and Technology,2025,19(3):P.223-239,17.

基金项目

supported by the National Natural Science Foundation of China(No.52172320) (No.52172320)

the Fundamental Research Funds for the Central Universities(Nos.2023-4-ZD-01 and 22120210542). (Nos.2023-4-ZD-01 and 22120210542)

International Journal of Transportation Science and Technology

2046-0430

访问量0
|
下载量0
段落导航相关论文