| 注册
首页|期刊导航|Petroleum Science|A novel fusion of interpretable boosting algorithm and feature selection for predicting casing damage

A novel fusion of interpretable boosting algorithm and feature selection for predicting casing damage

Juan Li Mandella Ali M.Fargalla Wei Yan Zi-Xu Zhang Wei Zhang Zi-Chen Zou Tang Qing Tao Yang Chao-Dong Tan Guang-Cong Li

Petroleum Science2025,Vol.22Issue(10):P.4157-4173,17.
Petroleum Science2025,Vol.22Issue(10):P.4157-4173,17.DOI:10.1016/j.petsci.2025.08.011

A novel fusion of interpretable boosting algorithm and feature selection for predicting casing damage

Juan Li 1Mandella Ali M.Fargalla 2Wei Yan 2Zi-Xu Zhang 2Wei Zhang 2Zi-Chen Zou 2Tang Qing 1Tao Yang 1Chao-Dong Tan 2Guang-Cong Li2

作者信息

  • 1. PetroChina Dagang Oilfield Petroleum Engineering Research Institute,Tianjin,300450,China
  • 2. College of Safety and Ocean Engineering,China University of Petroleum,Beijing 102249,China
  • 折叠

摘要

关键词

Casing damage/Machine learning/Feature selection/Sand production/Boosting algorithm

分类

能源科技

引用本文复制引用

Juan Li,Mandella Ali M.Fargalla,Wei Yan,Zi-Xu Zhang,Wei Zhang,Zi-Chen Zou,Tang Qing,Tao Yang,Chao-Dong Tan,Guang-Cong Li..A novel fusion of interpretable boosting algorithm and feature selection for predicting casing damage[J].Petroleum Science,2025,22(10):P.4157-4173,17.

基金项目

funded by the National Natural Science Foundation Project(Grant No.52274015) (Grant No.52274015)

the National Science and Technology Major Project(Grant No.2025ZD1402205)。 (Grant No.2025ZD1402205)

Petroleum Science

1672-5107

访问量0
|
下载量0
段落导航相关论文