| 注册
首页|期刊导航|电波科学学报|基于卷积神经网络和注意力机制的无线电地图构建方法研究

基于卷积神经网络和注意力机制的无线电地图构建方法研究

TAN Haidong YANG Jingjing HUANG Ming

电波科学学报2025,Vol.40Issue(6):1069-1077,9.
电波科学学报2025,Vol.40Issue(6):1069-1077,9.DOI:10.12265/j.cjors.2024201

基于卷积神经网络和注意力机制的无线电地图构建方法研究

A study on the methodology for constructing radio maps utilizing convolutional neural network and attention mechanisms

TAN Haidong 1YANG Jingjing 1HUANG Ming1

作者信息

  • 1. School of Information Science and Engineering,Yunnan University,Kunming 650091,China||Wireless Innovation Laboratory,Yunnan University,Kunming 650091,China
  • 折叠

摘要

Abstract

The radio map(RM)describes the spatial field distribution and coverage of radio signals in a specific area,which helps optimize the layout of wireless networks and improve the utilization of the spectrum.Since radio wave propagation is complex in densely built urban environments,building high-precision radio maps is a challenge.A convolutional neural network(CNN)model based on the open-source complex urban environment radio propagation simulation dataset is proposed.It combines the use of vanilla convolution and differential convolution to construct an accurate radio maps from sparse spatial field strength of radio signals.The differential convolution is used to extract high-frequency information of radio propagation,while the vanilla convolution provides a global feature representation.Furthermore,a content-guided attention mechanism is introduced to enable the model to focus on the key areas of each channel,thereby improving the accuracy of the map estimation.Experimental results show that the proposed method has a higher accuracy and stability in radio map construction than the existing baseline methods,with an average RMSE reduction of 13%.It also shows stronger robustness in noisy environments.This method has built high-accuracy and stable radio maps in urban environments with dense buildings,which has potential application value for wireless network optimization and radio regulation.

关键词

无线电地图(RM)/稀疏测量/注意力机制/差分卷积/鲁棒性/卷积神经网络(CNN)

Key words

radio map(RM)/sparse measurements/attention mechanism/differential convolution/robustness/convolutional neural network(CNN)

分类

信息技术与安全科学

引用本文复制引用

TAN Haidong,YANG Jingjing,HUANG Ming..基于卷积神经网络和注意力机制的无线电地图构建方法研究[J].电波科学学报,2025,40(6):1069-1077,9.

基金项目

国家自然科学基金(62361055,62261059)National Natural Science Foundation of China(62361055,62261059) (62361055,62261059)

电波科学学报

OA北大核心

1005-0388

访问量0
|
下载量0
段落导航相关论文