| 注册
首页|期刊导航|高技术通讯|深度神经网络驱动的第一性原理精度分子动力学的研究进展

深度神经网络驱动的第一性原理精度分子动力学的研究进展

HU Siyu LI Jimei JIA Weile TAN Guangming

高技术通讯2025,Vol.35Issue(11):1174-1187,14.
高技术通讯2025,Vol.35Issue(11):1174-1187,14.DOI:10.3772/j.issn.1002-0470.2025.11.003

深度神经网络驱动的第一性原理精度分子动力学的研究进展

Survey on deep neural network-driven ab initio molecular dynamics

HU Siyu 1LI Jimei 2JIA Weile 1TAN Guangming1

作者信息

  • 1. State Key Laboratory of Processors,Institute of Computing Technology,Beijing 100190||University of Chinese Academy of Sciences,Beijing 100049
  • 2. State Key Laboratory of Processors,Institute of Computing Technology,Beijing 100190
  • 折叠

摘要

Abstract

Neural network force fields(NNFFs)have become a new paradigm in molecular dynamics(MD)simulations.This paper distinguishes NNFF models by their descriptors(fixed or learnable),classifies them into fixed descrip-tor neural network force fields and learnable descriptor neural network force fields.This paper introduces some rep-resentative NNFF models.We select two representative methods,the two-body Gaussian basis set and the deep po-tential model respectively,and further analyzes their design guidelines and principles.This paper also explores the characteristics of different types of NNFFs and tests them on four real datasets to evaluate different types of NNFF models.

关键词

分子动力学/神经网络力场/描述符

Key words

molecular dynamic/neural network force field/descriptor

引用本文复制引用

HU Siyu,LI Jimei,JIA Weile,TAN Guangming..深度神经网络驱动的第一性原理精度分子动力学的研究进展[J].高技术通讯,2025,35(11):1174-1187,14.

基金项目

国家自然科学基金重点(62032023)资助项目. (62032023)

高技术通讯

OA北大核心

1002-0470

访问量0
|
下载量0
段落导航相关论文