| 注册
首页|期刊导航|光学精密工程|RSF-DETR:空频增强与上下文重构的路面损伤检测

RSF-DETR:空频增强与上下文重构的路面损伤检测

ZHOU Dongmei WU Bingbing LIU Xiaoming YAN Haowen WU Xiaosuo

光学精密工程2025,Vol.33Issue(22):3549-3563,15.
光学精密工程2025,Vol.33Issue(22):3549-3563,15.DOI:10.37188/OPE.20253322.3549

RSF-DETR:空频增强与上下文重构的路面损伤检测

RSF-DETR:Road damage detection with space frequency enhancement and context reconstruction

ZHOU Dongmei 1WU Bingbing 1LIU Xiaoming 2YAN Haowen 1WU Xiaosuo1

作者信息

  • 1. College of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
  • 2. Engineering School,Qinghai Institute of Technology,Xining 810016,China
  • 折叠

摘要

Abstract

Aiming at the problems of various pavement-damage forms,low detection accuracy and high miss-detection rate,this paper proposed an improved method based on the RT-DETR model.First,in-spired by the joint idea of high-frequency edge enhancement in the spatial domain and global feature extrac-tion in the frequency domain,the spatial-frequency dual-domain feature-enhancement module FreSCal was designed to strengthen the model's ability to extract target and edge information and to improve its ca-pacity to distinguish target regions from background.Secondly,drawing on the context-guided feature-re-construction concept of the CGRSeg network,the context-guided spatial feature-reconstruction pyramid network RSDFPN was proposed.By building a scale-aware semantic pyramid and a dynamic feature-fu-sion mechanism,the model's capability to fuse features for multi-scale targets was significantly enhanced.Finally,through dynamic group convolution shuffling and the global modeling capacity of Transformer,ef-ficient spatial-domain feature enhancement and frequency-domain context fusion were achieved,raising the model's detection accuracy for target recognition.The experimental results show that the improved meth-od in this paper has achieved significant improvement on both RDD2022 and UAV-PDD2023 mainstream datasets,mAP@0.5 Compared with the baseline method,the indicators are increased by 1.9%and 3.7%respectively,which can provide an effective technical support for pavement damage detection.

关键词

路面损伤检测/实时检测Transformer/空频双域/上下文引导重构/动态分组卷积混洗与Transformer协同优化模块

Key words

pavement damage detection/Real-Time Detection Transformer(RT-DETR)/space fre-quency dual domain/context guided reconstruction/Dynamic Group Convolution Shuffle Transformer(DGCST)

分类

信息技术与安全科学

引用本文复制引用

ZHOU Dongmei,WU Bingbing,LIU Xiaoming,YAN Haowen,WU Xiaosuo..RSF-DETR:空频增强与上下文重构的路面损伤检测[J].光学精密工程,2025,33(22):3549-3563,15.

基金项目

国家重点研发计划(No.2022YFB3903604) (No.2022YFB3903604)

甘肃省科技计划项目(No.24JRZA104) (No.24JRZA104)

"昆仑英才"人才引进科研项目(No.W2023-QLGKLYCZX-034) (No.W2023-QLGKLYCZX-034)

国家自然科学基金项目(No.62161016) (No.62161016)

科研培育计划项目(No.202301lwys021) (No.202301lwys021)

光学精密工程

OA北大核心

1004-924X

访问量0
|
下载量0
段落导航相关论文