| 注册
首页|期刊导航|光学精密工程|基于Transformer的边缘检测网络

基于Transformer的边缘检测网络

LIN Jianpu LI Xianguang LIN Shanling LÜ Shanhong LIN Zhixian

光学精密工程2025,Vol.33Issue(22):3564-3576,13.
光学精密工程2025,Vol.33Issue(22):3564-3576,13.DOI:10.37188/OPE.20253322.3564

基于Transformer的边缘检测网络

Edge detection network based on transformer

LIN Jianpu 1LI Xianguang 2LIN Shanling 1LÜ Shanhong 1LIN Zhixian3

作者信息

  • 1. School of Advanced Manufacturing,Fuzhou Univ.,Quanzhou 362251,China||Fujian Optoelectronic Info.Sci.and Tech.Innovation Lab.,Fuzhou 350116,China
  • 2. School of Advanced Manufacturing,Fuzhou Univ.,Quanzhou 362251,China
  • 3. School of Advanced Manufacturing,Fuzhou Univ.,Quanzhou 362251,China||Fujian Optoelectronic Info.Sci.and Tech.Innovation Lab.,Fuzhou 350116,China||School of Physics and Info.Eng.,Fuzhou Univ.,Fuzhou 350116,China
  • 折叠

摘要

Abstract

The current mainstream edge detection method based on convolutional neural network has limi-tations in receptive field range and fine-grained edge perception.With the development of Vision Trans-former,its global modeling ability and flexible information interaction mechanism bring new possibilities for edge detection tasks.To solve this issue,this paper proposed an encoder-decoder model named TFEdge,which combined Transformer,Multi-Level Aggregation Feature Pyramid(MLAFP),and Multi-Scale Attention Aggregation(MSAA)modules for high-precision edge detection.The model intro-duced the Dilated Neighborhood Attention Transformer as the backbone network and extracted the global context information and local edge clues of the image through a multi-stage cascade design.Simultaneous-ly,the Multi-Level Aggregation Feature Pyramid was designed to aggregate the deep and shallow features of each stage,endowing the shallow features with more abundant semantic features to suppress image noise and improve the detection ability of indistinct boundaries.Finally,the Multi-Scale Attention Aggre-gation module,based on an attention mechanism,was proposed to further enhance feature representation by aggregating the cross-scale spatial and channel attention information of feature maps.The experiment is evaluated on the BSDS500 and NYUDv2 datasets.The ODS and OIS F-scores of TFEdge on the BS-DS500 are 0.857 and 0.874,respectively,while on the NYUDv2 they are 0.788 and 0.801,respective-ly.Compared with many existing methods,TFEdge shows superior edge detection performance in both quantitative and qualitative results.

关键词

边缘检测/Transformer/注意力机制/多级聚合特征金字塔/多尺度注意力增强

Key words

edge detection/transformer/attention mechanism/multi-level aggregation feature pyramid/multi-scale attention aggregation

分类

信息技术与安全科学

引用本文复制引用

LIN Jianpu,LI Xianguang,LIN Shanling,LÜ Shanhong,LIN Zhixian..基于Transformer的边缘检测网络[J].光学精密工程,2025,33(22):3564-3576,13.

基金项目

国家重点研发计划资助(No.2023YFB3609400) (No.2023YFB3609400)

光学精密工程

OA北大核心

1004-924X

访问量0
|
下载量0
段落导航相关论文