| 注册
首页|期刊导航|航空学报|基于深度学习的复合材料结构性能参数反演

基于深度学习的复合材料结构性能参数反演

XIANG Zijian MA Zhenyu YANG Xixiang

航空学报2025,Vol.46Issue(24):100-114,15.
航空学报2025,Vol.46Issue(24):100-114,15.DOI:10.7527/S1000-6893.2025.31877

基于深度学习的复合材料结构性能参数反演

Inversion of structural performance parameters of composite materials based on deep learning

XIANG Zijian 1MA Zhenyu 1YANG Xixiang1

作者信息

  • 1. College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
  • 折叠

摘要

Abstract

This paper proposes a deep-learning-based inversion method for determining the structural performance parameters of composite materials.Traditional testing methods for composite material performance typically require substantial experimental resources.In contrast,this study integrates finite element simulation with neural network models to achieve efficient and accurate identification of composite laminate parameters.This study evaluates the per-formance of deep learning models in parameter inversion and analyzes the effects of model hyperparameters,feature types,and quantities on inversion accuracy.The results demonstrate that the proposed method can accurately identify the elastic modulus,Poisson's ratio,strength,and other parameters of composite materials,with errors of less than 10%,except for Poisson's ratio,thus validating the effectiveness of the deep-learning-based composite material pa-rameter inversion method.Additionally,this study examines the impact of dataset composition and layer information on the accuracy of parameter inversion,providing a theoretical foundation for further optimization of composite material structure design.

关键词

复合材料/参数反演/深度学习/特征融合/有限元方法

Key words

composite material/parameter inversion/deep learning/feature fusion/finite element method

分类

航空航天

引用本文复制引用

XIANG Zijian,MA Zhenyu,YANG Xixiang..基于深度学习的复合材料结构性能参数反演[J].航空学报,2025,46(24):100-114,15.

基金项目

国家自然科学基金(52372438,51605484) National Natural Science Foundation of China(52372438,51605484) (52372438,51605484)

航空学报

OA北大核心

1000-6893

访问量0
|
下载量0
段落导航相关论文