| 注册
首页|期刊导航|计算机工程|基于同态加密的隐私保护逻辑回归模型训练方案

基于同态加密的隐私保护逻辑回归模型训练方案

MIAO Weijie WU Wenyuan

计算机工程2025,Vol.51Issue(12):68-81,14.
计算机工程2025,Vol.51Issue(12):68-81,14.DOI:10.19678/j.issn.1000-3428.0069639

基于同态加密的隐私保护逻辑回归模型训练方案

Privacy-Preserving Logistic Regression Model Training Scheme Based on Homomorphic Encryption

MIAO Weijie 1WU Wenyuan1

作者信息

  • 1. Chongqing Key Laboratory of Secure Computing for Biology,Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,Chongqing 400714,China||Chongqing School,University of Chinese Academy of Sciences,Chongqing 400714,China
  • 折叠

摘要

Abstract

Logistic regression is widely used in big data for predicting the probability of event occurrence.This study focuses on scenarios involving two parties and data being horizontally distributed.Based on Cheon-Kim-Kim-Song(CKKS)encryption scheme,a logistic regression model training scheme is designed.This scheme reduces the number of iterations in the training process using Newton's second-order approximation method.It employs the conjugate gradient method to solve Newton's second-order approximation and introduces a small amount of interaction,thereby significantly reducing the computational overhead of the ciphertext domain.Additionally,a new encoding method is used to reduce the number of ciphertext multiplications and communication overhead.Experimental results show that,for most datasets,using the Newton's second-order approximation method to set the number of iterations to less than three can achieve an accuracy comparable to that of the existing privacy protection schemes comprising five to seven iterations.For sample datasets with 60 and 112 dimension,existing schemes require 90 and 165 s,respectively,to complete five iterations,whereas the proposed scheme requires only 8 and 27 s.Moreover,the communication overhead is reduced to half that of the original scheme,requiring only 30.8 and 62.7 Mb to complete the training.

关键词

隐私保护/牛顿-共轭梯度法/逻辑回归/同态加密/CKKS方案

Key words

privacy protection/Newton-conjugate gradient method/logistic regression/homomorphic encryption/Cheon-Kim-Kim-Song(CKKS)scheme

分类

信息技术与安全科学

引用本文复制引用

MIAO Weijie,WU Wenyuan..基于同态加密的隐私保护逻辑回归模型训练方案[J].计算机工程,2025,51(12):68-81,14.

基金项目

国家重点研发专项(2020YFA0712300) (2020YFA0712300)

重庆市在渝院士牵头科技创新引导专项(2022YSZX-JCX0011CSTB,cstc2021yszx-jcyjX0004,CSTB2023YSZX-JCX0008,cstc2021jcyj-msxmX0821). (2022YSZX-JCX0011CSTB,cstc2021yszx-jcyjX0004,CSTB2023YSZX-JCX0008,cstc2021jcyj-msxmX0821)

计算机工程

OA北大核心

1000-3428

访问量0
|
下载量0
段落导航相关论文