| 注册
首页|期刊导航|煤矿安全|基于灰色关联分析与混合模型的煤矿甲烷伪数据识别研究

基于灰色关联分析与混合模型的煤矿甲烷伪数据识别研究

LIU Xiong MENG Qinglin LIANG Guangqing WU Ke WANG Yanpei ZHAO Peng LI Xuefeng HAO Yong ZHANG Zengrong LI Cheng HE Yu XUE Ting HU Yun

煤矿安全2025,Vol.56Issue(12):19-25,7.
煤矿安全2025,Vol.56Issue(12):19-25,7.DOI:10.13347/j.cnki.mkaq.20251135

基于灰色关联分析与混合模型的煤矿甲烷伪数据识别研究

Coal mine methane pseudo data recognition based on grey relational analysis and hybrid model

LIU Xiong 1MENG Qinglin 1LIANG Guangqing 2WU Ke 2WANG Yanpei 2ZHAO Peng 1LI Xuefeng 1HAO Yong 1ZHANG Zengrong 1LI Cheng 1HE Yu 1XUE Ting 1HU Yun1

作者信息

  • 1. Yulin Shenhua Energy Co.,Ltd.,Yulin 719000,China
  • 2. China Coal Technology and Engineering Group Chongqing Research Institute,Chongqing 400039,China
  • 折叠

摘要

Abstract

To overcome the limited ability of existing methods to detect trend-type pseudo data,this study develops a recognition method integrating grey relational analysis(GRA)with a hybrid model.GRA is employed to select key environmental factors,such as temperature,humidity,wind speed,and air pressure,which are highly correlated with methane concentration.Combined with wavelet threshold de-noising,support vector machine(SVM)anomaly detection,and heartbeat data-compression mechanisms,a multi-stage data cleaning chain is established.Subsequently,an auto regressive integrated moving average(ARIMA)model and a long short-term memory(LSTM)network are connected in series.The LSTM captures nonlinear temporal features,while ARIMA performs residual trend correction.A dynamic root mean square error(RMSE)threshold then automatically identifies pseudo data.The experimental results show that the proposed model has a recognition accuracy of 87%,RMSE of 0.09,mean absolute error(MAE)of 0.04,and an average response time of only 33 ms on 500 samples.In the detection of trend-type pseudo data,the pseudo data recognition rate is 85%and the data recovery rate is 93%.Compared with auto encoder(AE)and CNN-LSTM,this model achieves a recognition rate close to 96%in limited samples,with faster convergence of loss values and the lowest mean square error in multiple types of actual mine scenarios.The MSE of high gas working face is about 0.43,significantly lower than the 0.66 and 0.75 of the control model.The ablation experiment further validates the key roles of GRA feature screening,ARIMA trend correc-tion,and RMSE dynamic threshold.

关键词

伪数据识别/煤矿安全监控系统/智能监测/灰色关联分析/ARIMA/LSTM/趋势漂移检测

Key words

pseudo data identification/coal mine safety monitoring system/intelligent monitoring/grey relational analysis/AR-IMA/LSTM/trend drift detection

分类

矿业与冶金

引用本文复制引用

LIU Xiong,MENG Qinglin,LIANG Guangqing,WU Ke,WANG Yanpei,ZHAO Peng,LI Xuefeng,HAO Yong,ZHANG Zengrong,LI Cheng,HE Yu,XUE Ting,HU Yun..基于灰色关联分析与混合模型的煤矿甲烷伪数据识别研究[J].煤矿安全,2025,56(12):19-25,7.

基金项目

国家能源投资集团有限责任公司科技创新资助项目(GJNY-23-140) (GJNY-23-140)

重庆市自然科学基金博士直通车资助项目(CSTB2024NSCQ-BSX006) (CSTB2024NSCQ-BSX006)

煤矿安全

OA北大核心

1003-496X

访问量0
|
下载量0
段落导航相关论文