| 注册
首页|期刊导航|水力发电学报|多传感器融合下地下厂房洞室群定位与建图研究

多传感器融合下地下厂房洞室群定位与建图研究

ZHANG Zeyuan WANG Xiaoling ZHAI Haifeng ZHANG Jun YU Jia CHEN Bin

水力发电学报2025,Vol.44Issue(12):74-83,10.
水力发电学报2025,Vol.44Issue(12):74-83,10.DOI:10.11660/slfdxb.20251207

多传感器融合下地下厂房洞室群定位与建图研究

Multi-sensor fusion-based localization and mapping for underground powerhouse cavern groups

ZHANG Zeyuan 1WANG Xiaoling 1ZHAI Haifeng 1ZHANG Jun 1YU Jia 1CHEN Bin1

作者信息

  • 1. State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation,Tianjin University,Tianjin 300072,China
  • 折叠

摘要

Abstract

This study addresses the challenges of low positioning accuracy and poor stability caused by insufficient illumination,dust interference,and communication limitations in the unmanned construction of underground powerhouse cavern groups.We develop a LiDAR-IMU fused localization and mapping method through constructing a multi-sensor fusion framework.A tightly-coupled approach is implemented using the ESKF algorithm to integrate LiDAR point cloud data with IMU motion parameters.Specifically,this system leverages LiDAR for 3D spatial feature extraction to overcome low-light constraints,while utilizing six-degree-of-freedom IMU motion parameters to compensate for data loss during rapid equipment movement or occlusion.The framework is further enhanced through synchronous integration of keyframe matching,video pose optimization,and loop closure detection mechanism to improve system robustness.Simulation tests conducted on the M2DGR dataset demonstrate that this LiDAR-IMU fusion method increases scene coverage by 40%and reduces the average positioning error down to 16 cm,showing its significant accuracy improvement over single LiDAR solutions.Practical engineering applications confirm its effectiveness in overcoming dust interference and dynamic obstacles in complex underground cavern environments,and demonstrate it has achieved a positioning accuracy and mapping stability meeting the construction requirements.

关键词

地下洞室群/高精度定位/多传感器融合/激光惯导里程计/误差状态卡尔曼滤波

Key words

underground cavern group/high-accuracy positioning/multi-sensor fusion/LiDAR-inertial odometry/error state Kalman filter

分类

建筑与水利

引用本文复制引用

ZHANG Zeyuan,WANG Xiaoling,ZHAI Haifeng,ZHANG Jun,YU Jia,CHEN Bin..多传感器融合下地下厂房洞室群定位与建图研究[J].水力发电学报,2025,44(12):74-83,10.

基金项目

国家自然科学基金联合基金重点项目(U24B20111) (U24B20111)

国家自然科学基金项目(52279137) (52279137)

国家自然科学基金原创探索计划项目(52350417) (52350417)

水力发电学报

OA北大核心

1003-1243

访问量1
|
下载量0
段落导航相关论文