| 注册
首页|期刊导航|水利水电技术(中英文)|基于PatchTST的地下水位预测模型

基于PatchTST的地下水位预测模型

CHENG Shuai ZHANG Juan YANG Moyuan HUANG Junxiong HE Jijun YU Shuai MA Zhijun

水利水电技术(中英文)2025,Vol.56Issue(11):83-97,15.
水利水电技术(中英文)2025,Vol.56Issue(11):83-97,15.DOI:10.13928/j.cnki.wrahe.2025.11.007

基于PatchTST的地下水位预测模型

A multi-variable groundwater level prediction model based on PatchTST

CHENG Shuai 1ZHANG Juan 2YANG Moyuan 2HUANG Junxiong 2HE Jijun 3YU Shuai 2MA Zhijun2

作者信息

  • 1. Beijing Water Science and Technology Institute,Beijing 100048,China||College of Resource Environment and Tourism Capital Normal University,Beijing 100089,China
  • 2. Beijing Water Science and Technology Institute,Beijing 100048,China
  • 3. College of Resource Environment and Tourism Capital Normal University,Beijing 100089,China
  • 折叠

摘要

Abstract

[Objective]Accurate and rapid prediction of dynamic groundwater level changes is crucial for scientific groundwater management,yet long-term predictions influenced by multiple factors remain insufficiently researched.[Methods]To enhance the capability of long-term groundwater level forecasting,a multivariate long-term prediction model based on PatchTST(PatchTST-GWL)was developed.This model utilized cross-correlation functions to analyze the multivariate correlations and lag effects among factors like groundwater extraction,surface water recharge,rainfall,and lateral recharge.Long-term forecasts were conducted on groundwater levels in four typical shallow monitoring wells in the western suburbs of Beijing.The model performance and accuracy were assessed using the Nash-Sutcliffe Efficiency(NSE),Root Mean Square Error(RMSE),and Mean Absolute Error(MAE).The model's interpretability was also analyzed using the controlled variable method.[Results]The result showed that the prediction accuracy of the PatchTST-GWL model improves with the extension of the forecasting period.For 90 and 180 days forecasting periods,the NSE coefficients of groundwater level simulations exceeded 0.9 across all monitoring wells,with MAE,MSE,and RMSE reductions of 10%to 80%compared to commonly used deep learning models like Attention-Bi-LSTM and SVM.[Conclusion]The PatchTST-GWL model exhibits a significant advantage in the performance of long-term groundwater level predictions.By incorporating cross-correlation functions to calculate the lag effects of groundwater extraction,rainfall,surface water recharge,and lateral recharge changes on groundwater levels,the model significantly enhances prediction accuracy.Furthermore,the predictions align with the response patterns of various influencing factors,consistent with objective physical laws,demonstrating good interpretability.This model can accurately and swiftly predict groundwater levels,effectively supporting scientific assessments and rational utilization of groundwater resources.

关键词

地下水水位预测/Transformer/多头注意力机制/降雨/人类活动/PatchTST-GWL/人工智能/中长期预测

Key words

groundwater level prediction/Transformer/multi-head attention/rainfall/human activity/PatchTST-GWL/artificial intelligence/medium and long term forecast

分类

天文与地球科学

引用本文复制引用

CHENG Shuai,ZHANG Juan,YANG Moyuan,HUANG Junxiong,HE Jijun,YU Shuai,MA Zhijun..基于PatchTST的地下水位预测模型[J].水利水电技术(中英文),2025,56(11):83-97,15.

基金项目

北京市自然科学基金项目(8232032) (8232032)

国家自然科学基金项目(52209005) (52209005)

水利部重大科技项目(SKS-2022044) (SKS-2022044)

北京学者培养经费资助项目(GZ-2024-002-SZY) (GZ-2024-002-SZY)

水利水电技术(中英文)

OA北大核心

1000-0860

访问量2
|
下载量0
段落导航相关论文