| 注册
首页|期刊导航|生物信息学|基于机器学习筛选自噬相关糖尿病肾脏疾病的诊断基因及免疫浸润分析

基于机器学习筛选自噬相关糖尿病肾脏疾病的诊断基因及免疫浸润分析

KANG Yi JIN Qian ZHOU Mengqi ZHENG Huijuan LI Danwen WANG Yaoxian LÜ Jie

生物信息学2025,Vol.23Issue(4):261-276,16.
生物信息学2025,Vol.23Issue(4):261-276,16.DOI:10.12113/202407005

基于机器学习筛选自噬相关糖尿病肾脏疾病的诊断基因及免疫浸润分析

Screening of autophagy-related diagnostic genes in diabetic kidney disease using machine learning and immune infiltration analysis

KANG Yi 1JIN Qian 2ZHOU Mengqi 3ZHENG Huijuan 4LI Danwen 1WANG Yaoxian 4LÜ Jie4

作者信息

  • 1. Dongzhimen Hospital,Beijing University of Chinese Medicine,Beijing 100700,China||Beijing University of Chinese Medicine,Beijing 100029,China
  • 2. Beijing University of Chinese Medicine,Beijing 100029,China
  • 3. Beijing Puren Hospital,Beijing 100062,China
  • 4. Dongzhimen Hospital,Beijing University of Chinese Medicine,Beijing 100700,China
  • 折叠

摘要

Abstract

To investigate the role of autophagy-related genes(ARGs)in diabetic kidney disease(DKD),screen potential diagnostic genes using machine learning methods,and thereby provide new biomarkers and targets for the early diagnosis and treatment of DKD.ARGs were obtained from the HADb database.Differential expression analysis of the GSE96804 dataset was performed to identify differentially expressed genes(DEGs),which were intersected with ARGs to screen DKD-ARGs genes for GO and KEGG enrichment analysis.Five machine learning methods(LASSO regression,SVM,random forest,XGBoost,and BORUTA)were used to screen and validate diagnostic genes.Unsupervised clustering analysis and principal component analysis were used to identify autophagy molecular subtypes and perform immune infiltration analysis.A total of 1526 DEGs(706 up-regulated genes and 820 down-regulated genes)were identified.The intersection of DEGs with 222 ARGs screened out 16 DKD-ARGs.GO and KEGG analyses showed that the genes were mainly enriched in biological processes and signaling pathways related to cell death,autophagy,hypoxic response,inflammation,and immune regulation.Machine learning algorithms ultimately identified three key diagnostic genes:CASP3,CDKN1B,and PTEN,which showed good predictive performance in the validation set.Consistency clustering based on the screened genes identified Cluster1 and Cluster2.Immune infiltration analysis showed significant differences in immune cell distribution between the two autophagy molecular subtypes,revealing the complex relationship between autophagy and immune response in DKD.The autophagy-related diagnostic genes CASP3,CDKN1B,and PTEN have significant potential for early diagnosis and treatment of DKD,providing new research directions and therapeutic strategies for DKD.

关键词

糖尿病肾脏疾病/自噬/机器学习/免疫浸润/诊断基因

Key words

Diabetic kidney disease/Autophagy/Machine learning/Immune infiltration/Diagnostic genes

分类

生物科学

引用本文复制引用

KANG Yi,JIN Qian,ZHOU Mengqi,ZHENG Huijuan,LI Danwen,WANG Yaoxian,LÜ Jie..基于机器学习筛选自噬相关糖尿病肾脏疾病的诊断基因及免疫浸润分析[J].生物信息学,2025,23(4):261-276,16.

基金项目

国家中医药管理局中医药传承与创新"百千万"人才工程项目(国中医药人教发[2018]12号) (国中医药人教发[2018]12号)

中央高校基本科研业务费专项资金资助(2023-JYB-JBQN-020) (2023-JYB-JBQN-020)

中华中医药学会联合攻关项目(2023DYPLHGG-11). (2023DYPLHGG-11)

生物信息学

1672-5565

访问量0
|
下载量0
段落导航相关论文