| 注册
首页|期刊导航|石油地球物理勘探|基于MABCDT-Curvelet的叠后地震资料去噪方法

基于MABCDT-Curvelet的叠后地震资料去噪方法

NIU Chaoyi HUANG Xuri YAN Shengyuan CHEN Xiaochun WO Yukai MA An

石油地球物理勘探2025,Vol.60Issue(6):1417-1428,12.
石油地球物理勘探2025,Vol.60Issue(6):1417-1428,12.DOI:10.13810/j.cnki.issn.1000-7210.20250064

基于MABCDT-Curvelet的叠后地震资料去噪方法

Post-stack seismic data denoising via MABCDT-Curvelet transform

NIU Chaoyi 1HUANG Xuri 2YAN Shengyuan 1CHEN Xiaochun 2WO Yukai 2MA An3

作者信息

  • 1. School of Geosciences and Technology,Southwest Petroleum University,Chengdu,Sichuan 610500,China
  • 2. School of Geosciences and Technology,Southwest Petroleum University,Chengdu,Sichuan 610500,China||State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu,Sichuan 610500,China||Key Laboratory of Geophysical Detection Technology for Oil and Gas in the Foothill Zones of Petroleum and Chemical Industry,Southwest Petroleum University,Chengdu,Sichuan 610500,China
  • 3. Research Institute of Exploration and Development,PetroChina Tarim Oilfield Company,Korla,Xinjiang 841000,China
  • 折叠

摘要

Abstract

Noise in post-stack seismic data can severely interfere with the identification and interpretation of re-flection signals,making efficient denoising essential for improving the accuracy of seismic data interpretation.Owing to its superior multi-scale and multi-directional characteristics,curvelet transform has been widely ad-opted for post-stack data denoising.However,conventional curvelet transform tends to produce pseudo-Gibbs effects at boundaries,which leads to edge oscillations and spurious reflections.In addition,aggressive noise suppression often results in the loss of valid signals,which limits the practical applicability of these methods.To address these challenges,this paper proposes a curvelet transform approach incorporating multiscale adap-tive block curvelet-domain thresholding(MABCDT).First,cycle spinning and MABCDT are introduced in the curvelet domain to enhance the preservation of weak signals and significantly mitigate pseudo-Gibbs phe-nomena.Then,a fast non-local mean filtering is applied to the data after inverse curvelet transform,which fur-ther retains valid signals while removing residual noise.Finally,a directional smoothing diffusion algorithm is introduced,which utilizes gradient direction information to perform directionally weighted smoothing and diffu-sion,thereby further suppressing noise and enhancing the continuity of valid signals.Both synthetic and field data tests demonstrate that the proposed method outperforms conventional post-stack denoising techniques in terms of signal-to-noise ratio enhancement and waveform fidelity.The method preserves the continuous struc-tural features of seismic signals while suppressing noise and significantly reduces pseudo-Gibbs effects caused by high-frequency truncation.

关键词

曲波变换/循环平移/多尺度自适应块曲波域阈值/快速非局部均值滤波/方向性平滑扩散算法/弱信号识别

Key words

curvelet transform/cycle spinning/multiscale adaptive block curvelet-domain thresholding(MABCDT)/fast non-local means filtering/directional smoothing diffusion algorithm/weak signal identification

分类

天文与地球科学

引用本文复制引用

NIU Chaoyi,HUANG Xuri,YAN Shengyuan,CHEN Xiaochun,WO Yukai,MA An..基于MABCDT-Curvelet的叠后地震资料去噪方法[J].石油地球物理勘探,2025,60(6):1417-1428,12.

基金项目

本项研究受国家自然科学基金项目"羌塘盆地格架及沉积结构地球物理成像理论与识别技术研究"(42241206)、国家自然科学基金联合基金项目"莺琼盆地中深层异常温压地震岩石物理理论及综合智能储层预测方法研究"(U20B2016)和"渤海海域中生界火山岩有利相带地震响应机理及高精度成像方法研究"(U24B2022)联合资助. (42241206)

石油地球物理勘探

OA北大核心

1000-7210

访问量1
|
下载量0
段落导航相关论文