| 注册
首页|期刊导航|物理化学学报|界面工程与氧空位协同策略促进Cd0.5Zn0.5S/BiOBr S型异质结高效光催化去除抗生素

界面工程与氧空位协同策略促进Cd0.5Zn0.5S/BiOBr S型异质结高效光催化去除抗生素

Deyun Ma Fenglan Liang Qingquan Xue Yanping Liu Chunqiang Zhuang Shijie Li

物理化学学报2025,Vol.41Issue(12):158-168,11.
物理化学学报2025,Vol.41Issue(12):158-168,11.DOI:10.1016/j.actphy.2025.100190

界面工程与氧空位协同策略促进Cd0.5Zn0.5S/BiOBr S型异质结高效光催化去除抗生素

Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal

Deyun Ma 1Fenglan Liang 1Qingquan Xue 2Yanping Liu 3Chunqiang Zhuang 4Shijie Li5

作者信息

  • 1. School of Food and Pharmaceutical Engineering,School of Life Sciences,Zhaoqing University,Zhaoqing 526061,Guangdong Province,China
  • 2. Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province,Interdisciplinary Research Academy(IRA),Zhejiang Shuren University,Hangzhou 310015,Zhejiang Provincne,China
  • 3. Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry,National Engineering Research Center for Marine Aquaculture,Zhejiang Ocean University,Zhoushan 316022,Zhejiang Province,China
  • 4. Institute of Microstructure and Property of Advanced Materials,Beijing University of Technology,Beijing 100124,China
  • 5. Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry,National Engineering Research Center for Marine Aquaculture,Zhejiang Ocean University,Zhoushan 316022,Zhejiang Province,China||Henan Engineering Research Center of Resource&Energy Recovery from Waste,School of Energy Science and Technology,Henan University,Zhengzhou 450046,Henan Province,China
  • 折叠

摘要

Abstract

The construction of S-scheme heterojunction photocatalysts has emerged as a promising strategy to address the urgent need for efficient antibiotic wastewater remediation.However,persistent challenges in achieving interfacial intimacy and precise charge transfer regulation between semiconductors have hindered their practical implementation.In this work,we engineered a hierarchical Cd0.5Zn0.5S/BiOBr S-scheme heterojunction via a controlled solvothermal synthesis,where BiOBr microspheres serve as the core,and Cd0.5Zn0.5S nanoparticles form a conformal shell.This architecture ensures maximal interfacial contact and directional charge dynamics,critical for optimizing photocatalytic efficiency.The optimized heterojunction exhibits superior catalytic performance,achieving tetracycline(TC)degradation rate constants 3.3-and 1.6-fold greater than pristine BiOBr and Cd0.5Zn0.5S,respectively.This enhancement stems from the synergistic interplay of efficient charge separation and preserved redox capacities inherent to the S-scheme mechanism.Furthermore,the TC degradation process and mechanism were elucidated.This study provides a new perspective on developing defective S-scheme heterojunctions for antibiotic wastewater purification with high performance.

关键词

内建电场/Cd0.5Zn0.5S/BiOBr/S型异质结/氧空位/抗生素降解/光催化/毒性分析

Key words

Internal electric field/Cd0.5Zn0.5S/BiOBr/S-scheme heterojunction/Oxygen vacancies/Antibiotic degradation/Photocatalysis/Toxicity analysis

分类

化学化工

引用本文复制引用

Deyun Ma,Fenglan Liang,Qingquan Xue,Yanping Liu,Chunqiang Zhuang,Shijie Li..界面工程与氧空位协同策略促进Cd0.5Zn0.5S/BiOBr S型异质结高效光催化去除抗生素[J].物理化学学报,2025,41(12):158-168,11.

基金项目

This work has been financially supported by the Natural Science Foundation of Zhejiang Province(LY20E080014),the National Natural Science Foundation of China(51708504),and the Open Cooperation Foundation of the Department of Chemical Science of Henan University(DCSHENU2413). 浙江省自然科学基金(LY20E080014),国家自然科学基金(51708504)及河南大学化学学科开放合作基金(DCSHENU2413)资助 (LY20E080014)

物理化学学报

OA北大核心

1000-6818

访问量0
|
下载量0
段落导航相关论文