| 注册
首页|期刊导航|智能系统学报|分析力学和图神经网络的轨迹预测方法

分析力学和图神经网络的轨迹预测方法

LI Minghan XIAO Yang XING Xianglei

智能系统学报2025,Vol.20Issue(6):1355-1365,11.
智能系统学报2025,Vol.20Issue(6):1355-1365,11.DOI:10.11992/tis.202501020

分析力学和图神经网络的轨迹预测方法

Trajectory prediction methods based on analytical mechanics and graph neural networks

LI Minghan 1XIAO Yang 1XING Xianglei1

作者信息

  • 1. College of Intelligent Systems Science and Engineering,Harbin Engineering University,Harbin 150001,China
  • 折叠

摘要

Abstract

Trajectory prediction seeks to forecast the future motion of intelligent agents by analyzing their past trajector-ies.While deep learning methods have been demonstrated to capture complex features,they frequently neglect physical constraints,thereby constraining interpretability.To address this,a trajectory prediction model is proposed that integ-rates analytical mechanics with graph neural networks(GNNs).The model combines GNNs,convolutional neural net-works,and graph attention to extract spatiotemporal dynamics,infers interaction forces from Euclidean distance and rel-ative motion,and incorporates Lagrange mechanics to enforce physical laws.Experiments on the Spring-balls dataset demonstrate the superior performance of the proposed model in comparison to traditional models,exhibiting a 14.29%accuracy gain in 10-frame short-term prediction for the 5-ball case and improvements of 6.25%and 4.81%in 50-frame long-term scenarios.In the domain of human motion prediction,our model demonstrates a reduction in mean position error(MPJPE)when compared to prevailing approaches for a wide range of actions.This finding signifies enhanced long-term accuracy and validates the efficacy of the model.

关键词

轨迹预测/图神经网络/拉格朗日力学/交互作用力/深度学习/多层感知机/运动学模型/分析力学

Key words

trajectory prediction/graph neural networks/Lagrangian mechanics/interaction force/deep learning/multi-layer perceptron/kinematic model/analytical mechanics

分类

信息技术与安全科学

引用本文复制引用

LI Minghan,XIAO Yang,XING Xianglei..分析力学和图神经网络的轨迹预测方法[J].智能系统学报,2025,20(6):1355-1365,11.

基金项目

国家自然科学基金项目(62076078,61703119). (62076078,61703119)

智能系统学报

OA北大核心

1673-4785

访问量0
|
下载量0
段落导航相关论文