| 注册
首页|期刊导航|液晶与显示|YOLOv8-NTS:一种针对交通标志检测的目标识别方法

YOLOv8-NTS:一种针对交通标志检测的目标识别方法

LI Pengfei XIONG Zhaoxin WANG Guibao

液晶与显示2025,Vol.40Issue(12):1868-1880,13.
液晶与显示2025,Vol.40Issue(12):1868-1880,13.DOI:10.37188/CJLCD.2025-0199

YOLOv8-NTS:一种针对交通标志检测的目标识别方法

YOLOv8-NTS:a target detection approach for traffic sign recognition

LI Pengfei 1XIONG Zhaoxin 1WANG Guibao2

作者信息

  • 1. School of Physics and Electronic Engineering,Shaanxi University of Technology,Hanzhong 723000,China
  • 2. School of Physics and Electronic Engineering,Shaanxi University of Technology,Hanzhong 723000,China||School of Electronic Information and Artificial Intelligence,Shaanxi University of Science&Technology,Xi'an 710021,China
  • 折叠

摘要

Abstract

To address the low detection accuracy of current traffic sign detection methods for small,blurred targets and complex environments,this paper proposes an improved traffic sign detection model YOLOv8-NTS,to enhance recognition performance in complex traffic scenarios.The model incorporates three key enhancements over YOLOv8:First,it introduces the lightweight Hybrid Attention Transformer(SlimHAT)module within the backbone network to strengthen global pixel information modeling and improve feature representation accuracy.Second,it replaces the original C2f module with the WT-C2fBlock module based on WTConv,reducing model parameters by 12.2%while maintaining detection accuracy.Finally,a novel detection head RFAhead was designed by integrating spatial attention mechanisms with convolutional operations,optimizing feature extraction and fusion processes to further enhance the model's object representation capability and robustness.Experiments on the TT100K traffic sign dataset demonstrate that compared to the baseline YOLOv8 model,the improved YOLOv8-NTS achieves significant performance gains:6.5%increase in precision,5.0%increase in recall,7.3%improvement in mAP50,and 5.3%enhancement in mAP50~90.The proposed YOLOv8-NTS model substantially improves traffic sign detection accuracy and generalization capabilities while maintaining low computational cost,validating the method's effectiveness and practical value.It provides reliable technical support for traffic sign recognition in intelligent transportation scenarios.

关键词

交通标志检测/SlimHAT/WT-C2fBlock/RFAhead/YOLOv8

Key words

traffic sign detection/SlimHAT/WT-C2fBlock/RFAhead/YOLOv8

分类

信息技术与安全科学

引用本文复制引用

LI Pengfei,XIONG Zhaoxin,WANG Guibao..YOLOv8-NTS:一种针对交通标志检测的目标识别方法[J].液晶与显示,2025,40(12):1868-1880,13.

基金项目

陕西省重点研发计划(No.2025CY-YBXM-122) (No.2025CY-YBXM-122)

陕西省秦创原"科学家+工程师"队伍建设项目(No.2024QCY-KXJ-168)Supported by Key Research and Development Program Projects of Shaanxi Province(No.2025CY-YBXM-122) (No.2024QCY-KXJ-168)

Shaanxi Province Qin Chuangyuan"Scientist+Engineer"Team Construction Project(No.2024QCY-KXJ-168) (No.2024QCY-KXJ-168)

液晶与显示

OA北大核心

1007-2780

访问量1
|
下载量0
段落导航相关论文