| 注册
首页|期刊导航|自动化学报|智能机器人类脑情景认知方法研究现状与展望

智能机器人类脑情景认知方法研究现状与展望

YU Nai-Gong YAN Jin-Han WANG Zong-Xia ZHANG Zhi-Wen LIU Jian-Jun

自动化学报2025,Vol.51Issue(12):2588-2608,21.
自动化学报2025,Vol.51Issue(12):2588-2608,21.DOI:10.16383/j.aas.c240716

智能机器人类脑情景认知方法研究现状与展望

Research Status and Prospects of Brain-inspired Situational Cognition Methods for Intelligent Robots

YU Nai-Gong 1YAN Jin-Han 1WANG Zong-Xia 2ZHANG Zhi-Wen 1LIU Jian-Jun1

作者信息

  • 1. School of Information Science and Technology,Beijing Uni-versity of Technology,Beijing 100124||Beijing Key Laborat-ory of Computational Intelligence and Intelligent System,Beijing 100124||Beijing Institute of Artificial Intelligence,Beijing 100124
  • 2. College of Computer Science,Beijing University of Technology,Beijing 100124
  • 折叠

摘要

Abstract

The ideal level of robots is to achieve brain-inspired intelligence and exhibit intelligent behaviors compar-able to those of humans and animals.As demands for robot perception and cognitive capabilities continue to rise,traditional artificial intelligence approaches are encountering significant bottlenecks.Mammals in nature exhibit re-markable situational cognition abilities.Inspired by the neural information transmission and processing mechanisms of their brains,research on brain-inspired situational cognition methods for robots has emerged as a prominent top-ic.This paper first introduces the situational cognition mechanisms of mammals such as rats and macaques,then explores situational cognition computational models inspired by these mechanisms,and reviews research on brain-in-spired situational cognition methods for robots.Finally,it summarizes the existing research challenges and envi-sions future development directions.

关键词

智能机器人/类脑情景认知方法/海马结构/生物视觉/认知地图

Key words

Intelligent robots/brain-inspired situational cognitive method/hippocampal formation/biological vis-ion/cognitive map

引用本文复制引用

YU Nai-Gong,YAN Jin-Han,WANG Zong-Xia,ZHANG Zhi-Wen,LIU Jian-Jun..智能机器人类脑情景认知方法研究现状与展望[J].自动化学报,2025,51(12):2588-2608,21.

基金项目

国家自然科学基金(62076014,61573029),北京市自然科学基金(4162012)资助 Supported by National Natural Science Foundation of China(62076014,61573029)and Beijing Natural Science Foundation(4162012) (62076014,61573029)

自动化学报

OA北大核心

0254-4156

访问量0
|
下载量0
段落导航相关论文