| 注册
首页|期刊导航|中国电力|考虑温控型负荷特性影响的集群用户超短期负荷预测方法

考虑温控型负荷特性影响的集群用户超短期负荷预测方法

MENG Hao XU Fei FU Shuai SUN Peng HAO Ling LIU Boyu LIU Zhiwei

中国电力2025,Vol.58Issue(12):63-72,85,11.
中国电力2025,Vol.58Issue(12):63-72,85,11.DOI:10.11930/j.issn.1004-9649.202502075

考虑温控型负荷特性影响的集群用户超短期负荷预测方法

Ultra-Short-Term Load Forecasting Method for Aggregated Users Considering the Impact of Temperature-Controlled Load Characteristics

MENG Hao 1XU Fei 2FU Shuai 1SUN Peng 1HAO Ling 2LIU Boyu 2LIU Zhiwei2

作者信息

  • 1. Tongliao Power Supply Company,State Grid Inner Mongolia East Electric Power Co.,Ltd.,Tongliao 028000,China
  • 2. State Key Laboratory of Power System Operation and Control(Tsinghua University),Beijing 100084,China
  • 折叠

摘要

Abstract

The load of aggregated users with a high proportion of temperature-controlled loads is prone to abrupt in characteristics due to factors such as temperature variations,leading to temporal distribution shifts in load characteristics across different historical periods.This results in poor performance of existing load forecasting modeling methods for aggregated users due to insufficient generalization capability.Drawing on the concept of transfer learning for extracting domain-invariant features in the spatial dimension,an ultra-short-term load forecasting method for aggregated users based on time-domain invariant feature modeling is proposed.Since the cycles of temporal distribution shifts in load data and the boundaries of these cycles are typically unknown,firstly,the temporal distribution shift is quantified,and the load is segmented into sequences with significant distribution differences to support the subsequent extraction of time-domain common features among samples.Then,a Transformer-based time-domain invariant feature extraction algorithm is proposed,which minimizes the temporal distribution differences among data samples with varying distributions to extract time-domain invariant features,thereby optimizing load forecasting modeling and improving prediction accuracy under scenarios of abrupt load characteristic changes.Finally,the superiority of the proposed method is validated using real residential load data.

关键词

温控型负荷/数据时序分布偏移/Transformer模型/超短期负荷预测/深度学习

Key words

temperature-controlled load/data temporal distribution shift/transformer model/ultra-short-term load forecasting/deep learning

引用本文复制引用

MENG Hao,XU Fei,FU Shuai,SUN Peng,HAO Ling,LIU Boyu,LIU Zhiwei..考虑温控型负荷特性影响的集群用户超短期负荷预测方法[J].中国电力,2025,58(12):63-72,85,11.

基金项目

国网内蒙古东部电力有限公司通辽供电公司科技项目(蒙东农牧区配电网典型负荷特征分析预测建模及平衡调控技术研究,526620240008). This work is supported by Science and Technology Project of State Grid East Inner Mongolia Electric Power Co.,Ltd.Tongliao Power Supply Company(Research on Typical Load Characteristic Analysis and Prediction Modeling and Balance Control Technology of Distribution Network in Agricultural And Pastoral Areas of Eastern Inner Mongolia,No.526620240008). (蒙东农牧区配电网典型负荷特征分析预测建模及平衡调控技术研究,526620240008)

中国电力

OA北大核心

1004-9649

访问量0
|
下载量0
段落导航相关论文