| 注册
首页|期刊导航|采矿与岩层控制工程学报|煤系岩层水力裂缝扩展轨迹及压裂效果智能预测研究

煤系岩层水力裂缝扩展轨迹及压裂效果智能预测研究

马军强 王红胜 董国伟 袁钰鑫 任小亮 杨森

采矿与岩层控制工程学报2025,Vol.7Issue(6):134-155,22.
采矿与岩层控制工程学报2025,Vol.7Issue(6):134-155,22.DOI:10.13532/j.jmsce.cn10-1638/td.2025-1087

煤系岩层水力裂缝扩展轨迹及压裂效果智能预测研究

Hydraulic fracture propagation path and intelligent prediction of fracturing effects in coal measure strata

马军强 1王红胜 1董国伟 1袁钰鑫 1任小亮 1杨森1

作者信息

  • 1. 西安科技大学 能源与矿业工程学院,陕西 西安 710054
  • 折叠

摘要

Abstract

To address the challenges in controlling hydraulic fracture propagation trajectories and stimulated volumes within multi-lithologic coal measure strata,particularly those caused by formation interfaces and interlayer strength variations,a combined finite-discrete element method(FDEM)was used to investigate hydraulic fracture behavior.The results show twelve distinct propagation modes under multifactor coupling conditions,which can be classified into four categories:interface penetration,penetration with interface extension,interface tracking,and interface arrest.A novel hybrid artificial intelligence model integrating BP neural networks with differential evolution(DE)and grey wolf optimization(GWO)algorithms(BP-DEGWO)was developed to predict fracture trajectories and stimulation effectiveness.Key controlling factors,including rock strength contrast coefficient,interface dip angle,interfacial strength,injection rate and perforation angle were identified,and their relative importance under varying in-situ stress conditions was quantified.A further intelligent optimization framework for hydraulic fracturing design in stratified formations was proposed based on the BP-DEGWO model.This approach provides a predictive tool for fracture geometry in heterogeneous coal-bearing strata and a methodological reference for AI-assisted fracturing optimization.The findings are instructive in enhancing stimulation efficiency in multi-lithologic unconventional reservoirs.

关键词

煤系岩层/水力压裂/裂缝扩展/有限-离散元方法/智能预测

Key words

coal-measure rock strata/hydraulic fracturing/fracture propagation/finite-discrete element method/intelligent prediction

分类

矿业与冶金

引用本文复制引用

马军强,王红胜,董国伟,袁钰鑫,任小亮,杨森..煤系岩层水力裂缝扩展轨迹及压裂效果智能预测研究[J].采矿与岩层控制工程学报,2025,7(6):134-155,22.

基金项目

国家自然科学基金资助项目(52474180) (52474180)

采矿与岩层控制工程学报

OA北大核心

2096-7187

访问量0
|
下载量0
段落导航相关论文