| 注册
首页|期刊导航|电子学报|基于大模型辅助的云边协同工作流调度算法

基于大模型辅助的云边协同工作流调度算法

黎广镕 李广军 尚晶 吴文泰 王泽平 龙赛琴

电子学报2025,Vol.53Issue(9):3060-3077,18.
电子学报2025,Vol.53Issue(9):3060-3077,18.DOI:10.12263/DZXB.20250494

基于大模型辅助的云边协同工作流调度算法

Large Language Model-Assisted Cloud-Edge Collaborative Workflow Scheduling Algorithm

黎广镕 1李广军 1尚晶 2吴文泰 1王泽平 1龙赛琴1

作者信息

  • 1. 暨南大学信息科学技术学院,广东 广州 510632
  • 2. 中移动信息技术有限公司,北京 100033
  • 折叠

摘要

Abstract

Executing workflows in cloud-edge collaborative environments can reduce data transmission latency be-tween the cloud and terminal devices.Significant differences exist between cloud computing nodes and edge devices in terms of computational capability,storage resources,and communication latency.Furthermore,the computational resources of edge servers exhibit dynamicity due to factors like workload pressure and performance degradation.The complex topo-logical dependencies within workflow applications introduce additional scheduling constraints.These combined factors ren-der the workflow scheduling problem in this context NP-hard.To address these challenges,this paper proposes large lan-guage model-assisted cloud-edge collaborative workflow scheduling algorithm(LAWS).The algorithm employs a knowl-edge graph to structurally represent the chain-of-thought(CoT)reasoning process.It decomposes the scheduling problem in-to multiple sub-problems and extracts sub-knowledge graphs to serve as chain-of-thought guides for the large model,facili-tating collaborative reasoning for scheduling decisions.Experimental results demonstrate that compared with traditional al-gorithms,the proposed algorithm achieves a reduction in workflow execution latency of 3%to 83%and a decrease in com-putational energy consumption of 2.4%to 66.0%.

关键词

工作流调度/云边协同/大模型/知识图谱/思维链/问题分解

Key words

workflow scheduling/cloud-edge collaboration/large language models/knowledge graph/chain-of-thought/problem decomposition

分类

信息技术与安全科学

引用本文复制引用

黎广镕,李广军,尚晶,吴文泰,王泽平,龙赛琴..基于大模型辅助的云边协同工作流调度算法[J].电子学报,2025,53(9):3060-3077,18.

基金项目

国家自然科学基金(No.U23B2027) (No.U23B2027)

广东基础与应用基础研究基金(No.2024A1515010214) National Natural Science Foundation of China(No.U23B2027) (No.2024A1515010214)

Guangdong Basic and Applied Basic Research Foundation(No.2024A1515010214) (No.2024A1515010214)

电子学报

OA北大核心

0372-2112

访问量0
|
下载量0
段落导航相关论文