| 注册
首页|期刊导航|弹道学报|基于WOA-DNN的高超声速飞行器实时再入轨迹优化方法

基于WOA-DNN的高超声速飞行器实时再入轨迹优化方法

代恩诚 蔡光斌 徐慧 魏昊 吕鑫 凡永华

弹道学报2025,Vol.37Issue(4):10-19,10.
弹道学报2025,Vol.37Issue(4):10-19,10.DOI:10.12115/ddxb.2025.10010

基于WOA-DNN的高超声速飞行器实时再入轨迹优化方法

Real-time Reentry Trajectory Optimization Method for Hypersonic Vehicles Based on WOA-DNN

代恩诚 1蔡光斌 1徐慧 1魏昊 1吕鑫 2凡永华3

作者信息

  • 1. 火箭军工程大学 导弹工程学院,陕西 西安 710025
  • 2. 北京市海淀区小营西路 31 号院丁七,北京 100085
  • 3. 西北工业大学 航天学院,陕西 西安 710072
  • 折叠

摘要

Abstract

To address the real-time requirements for hypersonic vehicle reentry trajectory optimization,a real-time trajectory optimization method that integrates the whale optimization algorithm(WOA)with deep neural network(DNN)was proposed.Firstly,a reentry trajectory optimization model for a hypersonic vehicle was established.The original non-convex optimal control problem was transformed into a convex optimization problem for efficient solution via sequential second-order cone programming,generating an optimal trajectory dataset incorporating aerodynamic parameter uncertainties.Subsequently,a DNN was constructed,mapping the vehicle's state sequence to optimal bank-angle commands.To address the high sensitivity of DNN performance to hyperparameters such as initial weights and thresholds,the WOA was introduced to globally optimize these parameters,thereby significantly enhancing the prediction accuracy and generalization capability.In the final online planning stage,near-optimal control commands were generated in real time based on the actual flight states.Numerical simulations demonstrate that under nominal and aerodynamic uncertainty conditions,the proposed WOA-DNN optimization method rapidly generates feasible trajectories that satisfy terminal accuracy requirements,significantly enhances computational efficiency.This highlights comprehensive advantages of the method in terms of both precision and robustness for trajectory optimization.

关键词

高超声速飞行器/再入轨迹优化/深度神经网络/鲸鱼优化算法/序列二阶凸规划

Key words

hypersonic vehicle/reentry trajectory optimization/deep neural networks/whale optimization algorithm/sequential second-order cone programming

分类

军事科技

引用本文复制引用

代恩诚,蔡光斌,徐慧,魏昊,吕鑫,凡永华..基于WOA-DNN的高超声速飞行器实时再入轨迹优化方法[J].弹道学报,2025,37(4):10-19,10.

基金项目

国家自然科学基金项目(62473374 ()

62403487) ()

弹道学报

OA北大核心

1004-499X

访问量0
|
下载量0
段落导航相关论文