| 注册
首页|期刊导航|弹道学报|基于多核融合RBF神经网络的高超声速飞行器自适应滑模控制

基于多核融合RBF神经网络的高超声速飞行器自适应滑模控制

戴一笑 常思江 陈琦

弹道学报2025,Vol.37Issue(4):57-66,10.
弹道学报2025,Vol.37Issue(4):57-66,10.DOI:10.12115/ddxb.2024.11009

基于多核融合RBF神经网络的高超声速飞行器自适应滑模控制

Adaptive Sliding Mode Control of Hypersonic Vehicle Based on a Multi-kernel Fused RBF Neural Network

戴一笑 1常思江 1陈琦1

作者信息

  • 1. 南京理工大学 能源与动力工程学院,江苏 南京 210094
  • 折叠

摘要

Abstract

To address the control challenges of hypersonic vehicle arising from unknown complex nonlinearities in the model,an adaptive sliding mode control method based on a multi-kernel fused radial basis function(RBF)neural network was proposed.By constructing a multi-kernel fused radial basis function neural network,the complex nonlinear functions in the hypersonic vehicle model were accurately estimated.Based on adaptive theory,a real-time update strategy for the neural network weights was designed to ensure estimation convergence and accuracy.Furthermore,the hypersonic vehicle control system was decomposed into velocity and altitude subsystems.The altitude subsystem,which contains more state variables,was simplified using backstepping theory.According to sliding mode control theory,control laws for both subsystems were designed,and the asymptotic convergence of the designed controllers was proven based on Lyapunov stability theory,ensuring the stability of the control strategy.Simulation results show that under complex disturbance conditions,the proposed method enables accurate tracking of key state parameters such as velocity and altitude,outperforming traditional methods and significantly improving both stability and control precision of the hypersonic vehicle control system.

关键词

高超声速飞行器/径向基函数神经网络/滑模控制/自适应理论/控制律

Key words

hypersonic vehicle/radial basis function neural network/sliding mode control/adaptive theory/control law

分类

航空航天

引用本文复制引用

戴一笑,常思江,陈琦..基于多核融合RBF神经网络的高超声速飞行器自适应滑模控制[J].弹道学报,2025,37(4):57-66,10.

基金项目

国家自然科学基金(52202475) (52202475)

弹道学报

OA北大核心

1004-499X

访问量0
|
下载量0
段落导航相关论文