| 注册
首页|期刊导航|东南大学学报(英文版)|基于多功能递归模糊神经网络的非定常风力机尾流降阶模型

基于多功能递归模糊神经网络的非定常风力机尾流降阶模型

张洪福 温嘉豪 周蕾

东南大学学报(英文版)2025,Vol.41Issue(4):437-445,9.
东南大学学报(英文版)2025,Vol.41Issue(4):437-445,9.DOI:10.3969/j.issn.1003-7985.2025.04.005

基于多功能递归模糊神经网络的非定常风力机尾流降阶模型

Reduced-order model of unsteady wind turbine wake based on a multifunctional recurrent fuzzy neural network

张洪福 1温嘉豪 2周蕾3

作者信息

  • 1. 香港理工大学机械工程系,香港 999077
  • 2. 哈尔滨工业大学土木工程学院,哈尔滨 150090
  • 3. 中南大学土木工程学院,长沙 410083
  • 折叠

摘要

Abstract

To enhance the prediction accuracy of unsteady wakes behind wind turbines,a novel reduced-order model is proposed by integrating a multifunctional recurrent fuzzy neural network(MFRFNN)and proper orthogonal decom-position(POD).First,POD is employed to reduce the di-mensionality of the wind field data,extracting spatiotempo-rally correlated modal coefficients and modes.These reduced-order variables can effectively capture the essential features of unsteady wake behaviors.Next,MFRFNN is utilized to predict the time series of modal coefficients.Fi-nally,by combining the predicted modal coefficients with their corresponding modes,a flow field is reconstructed,al-lowing accurate prediction of unsteady wake dynamics.The predicted wake data exhibit high consistency with large eddy simulation results in both the near-and far-wake re-gions and outperform existing data-driven methods.This ap-proach offers significant potential for optimizing wind farm design and provides a new solution for the precise prediction of wind turbine wake behavior.

关键词

计算流体动力学(CFD)/降阶模型/深度学习/风力机/尾流模型

Key words

computational fluid dynamics(CFD)/reduced-order model/deep learning/wind turbine/wake model

分类

能源科技

引用本文复制引用

张洪福,温嘉豪,周蕾..基于多功能递归模糊神经网络的非定常风力机尾流降阶模型[J].东南大学学报(英文版),2025,41(4):437-445,9.

基金项目

The National Natural Science Foundation of China(No.51908107). (No.51908107)

东南大学学报(英文版)

1003-7985

访问量0
|
下载量0
段落导航相关论文