| 注册
首页|期刊导航|地球空间信息科学学报(英文版)|Integrating remote sensing and deep learning for mapping urban housing wealth patterns

Integrating remote sensing and deep learning for mapping urban housing wealth patterns

Emmanuel Nyandwi Markus Gerke Pedro Achanccaray Christian Lessmann

地球空间信息科学学报(英文版)2025,Vol.28Issue(5):中插3,2063-2081,20.
地球空间信息科学学报(英文版)2025,Vol.28Issue(5):中插3,2063-2081,20.DOI:10.1080/10095020.2025.2543496

Integrating remote sensing and deep learning for mapping urban housing wealth patterns

Integrating remote sensing and deep learning for mapping urban housing wealth patterns

Emmanuel Nyandwi 1Markus Gerke 1Pedro Achanccaray 1Christian Lessmann2

作者信息

  • 1. Institute of Geodesy and Photogrammetry,Technical University of Braunschweig,Braunschweig,Germany
  • 2. International Economics,Faculty of Business and Economics,Technical University of Dresden,Dresden,Germany
  • 折叠

摘要

关键词

Deep learning(DL)/housing wealth/expert annotation/self-training(self-labeling)/multiclass instance segmentation/remote sensing(RS)image

Key words

Deep learning(DL)/housing wealth/expert annotation/self-training(self-labeling)/multiclass instance segmentation/remote sensing(RS)image

引用本文复制引用

Emmanuel Nyandwi,Markus Gerke,Pedro Achanccaray,Christian Lessmann..Integrating remote sensing and deep learning for mapping urban housing wealth patterns[J].地球空间信息科学学报(英文版),2025,28(5):中插3,2063-2081,20.

基金项目

This work was supported by the German Academic Exchange Service(DAAD)doctoral program funded by the Federal Foreign Office[Grant number 57507871]. (DAAD)

地球空间信息科学学报(英文版)

1009-5020

访问量0
|
下载量0
段落导航相关论文