| 注册
首页|期刊导航|自动化与信息工程|相对位姿与姿态池优化的类级别6D姿态估计模型

相对位姿与姿态池优化的类级别6D姿态估计模型

黄天仑 胡生超 刘笑 王卫军 冯伟

自动化与信息工程2025,Vol.46Issue(6):9-16,8.
自动化与信息工程2025,Vol.46Issue(6):9-16,8.DOI:10.12475/aie.20250602

相对位姿与姿态池优化的类级别6D姿态估计模型

Relative Pose and Pose Pool Optimized Category-level 6D Pose Estimation Model

黄天仑 1胡生超 1刘笑 2王卫军 1冯伟3

作者信息

  • 1. 中国科学院深圳先进技术研究院,广东 深圳 518055||中国科学院大学,北京 101408
  • 2. 中国科学院深圳先进技术研究院,广东 深圳 518055
  • 3. 中国科学院大学,北京 101408
  • 折叠

摘要

Abstract

To address the challenges faced by 6D pose estimation in complex environments—such as heavy reliance on high-precision 3D models or large-scale template libraries,severe occlusion,and lighting interference—this paper proposes a category-level 6D pose estimation model based on relative pose and pose pool optimization.The model constructs a progressive estimation framework encompassing target object segmentation and detection,keypoint matching,relative pose calculation,and pose pool-based optimization.By computing the absolute pose of the target object through relative poses between adjacent frames,it reduces dependency on high-precision 3D models or template libraries.Furthermore,a pose pool optimization strategy is introduced,integrating self-attention and cross-attention mechanisms to fuse historical frame information,thereby enhancing the accuracy and robustness of the current pose estimation.Experimental results on public datasets NOCS and HO3D demonstrate that the model achieves an average 5°5 cm accuracy of 90.35%,an average IoU25 of 99.97%,and an average translation error of 1.72 cm on the NOCS dataset,outperforming three comparative models.The average rotation error is 1.90°,which is comparable to the BundleSDF model.On the HO3D dataset,the model achieves an ADD-S of 96.9%and an ADD of 93.4%,surpassing four comparative models.These results indicate that the model can achieve accurate and stable category-level 6D pose estimation even under weak model dependency,providing crucial support for robotic manipulation in complex environments and practical deployment.

关键词

6D姿态估计/相对位姿/姿态池优化/类级别位姿估计/注意力机制

Key words

6D pose estimation/relative pose/pose-pool optimization/category-level pose estimation/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

黄天仑,胡生超,刘笑,王卫军,冯伟..相对位姿与姿态池优化的类级别6D姿态估计模型[J].自动化与信息工程,2025,46(6):9-16,8.

基金项目

国家重点研发计划(2023YFB4705002) (2023YFB4705002)

广东省现代控制技术重点实验室开放基金项目(GDKLMCT202402). (GDKLMCT202402)

自动化与信息工程

1674-2605

访问量0
|
下载量0
段落导航相关论文