| 注册
首页|期刊导航|广西师范大学学报(自然科学版)|基于改进YOLO11n模型的自动驾驶道路交通检测算法研究

基于改进YOLO11n模型的自动驾驶道路交通检测算法研究

田晟 赵凯龙 苗佳霖

广西师范大学学报(自然科学版)2026,Vol.44Issue(1):1-9,9.
广西师范大学学报(自然科学版)2026,Vol.44Issue(1):1-9,9.DOI:10.16088/j.issn.1001-6600.2024122304

基于改进YOLO11n模型的自动驾驶道路交通检测算法研究

Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model

田晟 1赵凯龙 1苗佳霖2

作者信息

  • 1. 华南理工大学 土木与交通学院,广东 广州 510641
  • 2. 南京林业大学 汽车与交通学院,江苏 南京 210037
  • 折叠

摘要

Abstract

With the rapid development of autonomous driving technology,road traffic detection,as a core task of the perception module,directly impacts the safety and reliability of autonomous driving systems.Although deep learning-based methods have become a research hotspot,challenges such as low detection accuracy and poor model generalization remain.To address these issues,this paper proposes an improved YOLO11n-based road traffic detection method.The proposed approach enhances the detection accuracy of small objects by adding a small object detection layer,optimizes the existing dual DWConv structure by introducing a GhostConv+DWConv detection head combination,and designs an Inner-CIoU loss function better suited for small objects to improve model generalization and the accuracy of bounding box regression.Experimental results show that,compared with the existing YOLO11n algorithm,the proposed model achieves detection accuracy improvements of 1.1%and 1.9%on the KITTI and BDD100K datasets,respectively,with detection speeds of 125 FPS and 124 FPS.This demonstrates the model's effectiveness in detecting low-resolution small objects and its strong generalization capability across diverse traffic scenarios.

关键词

自动驾驶/小目标检测/YOLO11/多尺度检测/损失函数

Key words

autonomous driving/small target detection/YOLO11/multi-scale detection/loss function

分类

信息技术与安全科学

引用本文复制引用

田晟,赵凯龙,苗佳霖..基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J].广西师范大学学报(自然科学版),2026,44(1):1-9,9.

基金项目

广东省自然科学基金(2020A1515010382,2021A1515011587) (2020A1515010382,2021A1515011587)

广西师范大学学报(自然科学版)

1001-6600

访问量0
|
下载量0
段落导航相关论文