| 注册
首页|期刊导航|广西师范大学学报(自然科学版)|智能通信与无人机结合的YOLOv8电动车骑行者头盔佩戴检测方法

智能通信与无人机结合的YOLOv8电动车骑行者头盔佩戴检测方法

刘志豪 李自立 苏珉

广西师范大学学报(自然科学版)2026,Vol.44Issue(1):23-32,10.
广西师范大学学报(自然科学版)2026,Vol.44Issue(1):23-32,10.DOI:10.16088/j.issn.1001-6600.2025010101

智能通信与无人机结合的YOLOv8电动车骑行者头盔佩戴检测方法

YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance

刘志豪 1李自立 1苏珉1

作者信息

  • 1. 广西高校非线性电路与光通信重点实验室(广西师范大学),广西 桂林 541004||广西师范大学 电子与信息工程学院/集成电路学院,广西 桂林 541004
  • 折叠

摘要

Abstract

Nowadays,the safety of electric vehicle(EV)riders has now become a focal issue in society,and wearing safety helmets was proven to be an effective way to reduce injury in accidents.In order to enhance road traffic safety and improve regulatory efficiency,an UAV-assisted helmet intelligent detection algorithm based on intelligent communication and deep learning is proposed.By combining intelligent communication technology,UAVs can transmit video data in real time and analyze it quickly by intelligent algorithms.First,an improved Outlook-C2f architecture was proposed to enhance the algorithm's focus on the small targets;Second,CARAFE is proposed to used in the Feature Pyramid Network(FPN)to dynamically generate weights for precise feature reconstruction and improved spatial resolution;Finally,WIoU(Wise Intersection over Union)was integrated to improve the accuracy of positional information.The experimental results show that,based on the road real-time dataset,the improved YOLOv8 algorithm achieves 96.7%mAP and 26.91 FPS,which are significantly better than the traditional method,demonstrating its potential for application in complex traffic scenarios.

关键词

头盔检测/智能通信/YOLO/注意力机制/无人机航拍

Key words

helmet detection/intelligent communication/YOLO/attention mechanism/UAV aerial photography

分类

交通工程

引用本文复制引用

刘志豪,李自立,苏珉..智能通信与无人机结合的YOLOv8电动车骑行者头盔佩戴检测方法[J].广西师范大学学报(自然科学版),2026,44(1):23-32,10.

基金项目

国家自然科学基金(62361006) (62361006)

广西师范大学学报(自然科学版)

1001-6600

访问量0
|
下载量0
段落导航相关论文