| 注册
首页|期刊导航|广西师范大学学报(自然科学版)|基于YOLO11的轻量化PCB缺陷检测算法研究

基于YOLO11的轻量化PCB缺陷检测算法研究

黄文杰 罗维平 陈镇南 彭志祥 丁梓豪

广西师范大学学报(自然科学版)2026,Vol.44Issue(1):56-67,12.
广西师范大学学报(自然科学版)2026,Vol.44Issue(1):56-67,12.DOI:10.16088/j.issn.1001-6600.2025022502

基于YOLO11的轻量化PCB缺陷检测算法研究

Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11

黄文杰 1罗维平 1陈镇南 2彭志祥 1丁梓豪1

作者信息

  • 1. 武汉纺织大学 机械工程与自动化学院,湖北 武汉 430200||湖北省数字化纺织装备重点实验室 (武汉纺织大学),湖北 武汉 430200
  • 2. 武汉纺织大学 机械工程与自动化学院,湖北 武汉 430200
  • 折叠

摘要

Abstract

To address the issues of low detection accuracy,high model complexity,and excessive computational costs in small-target defect detection of printed circuit boards(PCBs),which hinder deployment on edge devices,a lightweight algorithm based on YOLO11n was proposed.Firstly,the BiMAFPN(Bi-Directional Multi-Branch Auxiliary Feature Pyramid Network)architecture is employed to reconstruct the network structure.Subsequently,the C3k2_Faster module is implemented to reduce model complexity while maintaining detection accuracy.Finally,the LSCD(Lightweight Shared Convolutional Detection)head is introduced to enhance precision.Experimental results demonstrate that the proposed model achieves 93.0%precision and 82.8%recall,with a compact model size of 3.8 MiB.Enhancements include a 0.6 percentage points increase in precision.The mean average precision(mAP)values reach 89.9%(mAP@0.5)and 47.1%(mAP@0.5:0.95),representing improvements of 1.4 and 0.6 percentage points respectively compared with the baseline YOLO11n model while reducing model size,computational complexity,and parameter count by 30.9%,19.0%and 34.6%respectively.These optimizations enable the improved algorithm to maintain competitive detection performance while achieving significant lightweight characteristics,demonstrating strong potential for practical deployment in edge computing environments.

关键词

YOLO11/PCB缺陷/轻量化/BiFPN/目标检测

Key words

YOLO11/PCB defect/lightweight/BiFPN/object detection

分类

信息技术与安全科学

引用本文复制引用

黄文杰,罗维平,陈镇南,彭志祥,丁梓豪..基于YOLO11的轻量化PCB缺陷检测算法研究[J].广西师范大学学报(自然科学版),2026,44(1):56-67,12.

基金项目

国家自然科学基金(62103309) (62103309)

湖北省数字化纺织装备重点实验室公开项目(DTL2022007) (DTL2022007)

广西师范大学学报(自然科学版)

1001-6600

访问量0
|
下载量0
段落导航相关论文