| 注册
首页|期刊导航|中医药导报|人工智能时代中医药术语机器翻译质量评估研究

人工智能时代中医药术语机器翻译质量评估研究

任禹昕 陈子杰 林咏臻 刘平

中医药导报2025,Vol.31Issue(12):284-293,10.
中医药导报2025,Vol.31Issue(12):284-293,10.DOI:10.13862/j.cn43-1446/r.2025.12.045

人工智能时代中医药术语机器翻译质量评估研究

Research on Machine Translation Quality Evaluation of Traditional Chinese Medicine Terminology in the Artificial Intelligence Era:A Case Study of ChatGPT-4 and Google Translate

任禹昕 1陈子杰 2林咏臻 1刘平1

作者信息

  • 1. 北京中医药大学人文学院,北京 102488
  • 2. 北京中医药大学中医学院,北京 102488
  • 折叠

摘要

Abstract

Objectives:To evaluate the performance of large language models(LLMs)(such as ChatGPT-4)and traditional neural machine translation tools(such as Google Translate)in translating traditional Chinese medicine(TCM)terminology,and to explore a human-machine collaborative translation strategy for TCM.Methods:A semi-automatic machine translation evaluation method was adopted.The translation quality of TCM terminology by ChatGPT-4 and Google Translate was systematically assessed through a combination of three automatic evaluation metrics,BLEU,TER,and METEOR,and expert manual scoring.Additionally,experiments were conducted to verify the effect of prompt engineering on improving the translation quality of TCM terminology.Results:ChatGPT-4 significantly outperformed Google Translate in all three automatic evaluation metrics,BLEU,TER,and METEOR.The manual evaluation results also showed that ChatGPT-4 performed better than Google Translate,particularly in preserving cultural connotations and contextual adaptability.The test results of prompt words show that optimizing prompt words can improve the translation quality of ChatGPT-4.Conclusion:LLMs are superior machine translation tools for empowering TCM translation,with strong domain robustness,interactivity,situational learning ability,instruction-following ability,and complex reasoning ability.They can better handle metaphorical expressions and culture-loaded words in TCM.Optimizing prompts words can effectively enhance the TCM translation quality of LLMs.

关键词

机器翻译/神经机器翻译/大语言模型/中医药术语/翻译质量评估

Key words

machine translation/neural machine translation/large language models/traditional Chinese medicine terminology/translation quality assessment

分类

医药卫生

引用本文复制引用

任禹昕,陈子杰,林咏臻,刘平..人工智能时代中医药术语机器翻译质量评估研究[J].中医药导报,2025,31(12):284-293,10.

基金项目

北京中医药大学教育科学研究课题(XJY24035) (XJY24035)

2025年北京中医药大学社科培育项目(2025-JYB-PY-008) (2025-JYB-PY-008)

中医药导报

1672-951X

访问量0
|
下载量0
段落导航相关论文