| 注册
首页|期刊导航|海洋地质前沿|基于长短期记忆网络的横波速度预测方法

基于长短期记忆网络的横波速度预测方法

杨学奇 徐乐意 陈兆明 李杰 李坤娟 董国辉 程学欢

海洋地质前沿2025,Vol.41Issue(12):80-87,8.
海洋地质前沿2025,Vol.41Issue(12):80-87,8.DOI:10.16028/j.1009-2722.2024.259

基于长短期记忆网络的横波速度预测方法

Shear wave velocity prediction based on long short-term memory network:a case study of Paleogene reservoir in Huizhou area,Zhu I Depression,Pearl River Mouth Basin

杨学奇 1徐乐意 1陈兆明 1李杰 1李坤娟 1董国辉 1程学欢1

作者信息

  • 1. 中海石油(中国)有限公司深圳分公司,深圳 518054||中海石油深海开发有限公司,深圳 518054
  • 折叠

摘要

Abstract

The shear wave velocity is an important parameter for seismic prestack inversions and accurate predic-tion of the missing shear wave velocity in the well is a key step of reservoir identification.Traditional methods for predicting shear wave velocity based on petrophysical modeling is often limited by the assumptions of petrophys-ical models,making it difficult to achieve high prediction accuracy.Therefore,we fully leveraged the advantages of deep learning neural network technology and proposed a shear wave velocity prediction method based on long short-term memory networks.This method utilizes long short-term memory networks,combined with the unique characteristics of shear wave velocity curves in longitudinal time series,to deeply explore the mapping relation-ship between logging parameters and shear wave velocity,and successfully built a network model between the two,enabling the model to accurately predict shear wave velocity.This technique was applied to the Paleogene reservoir in Huixinan area,Zhu I Depression,the Pearl River Mouth Basin,South China Sea,and the missing shear wave velocity in the well was predicted.The prediction results show that compared to the estimation of shear wave velocity using traditional petrophysical models,the prediction results based on the long short-term memory networks have smaller errors,higher correlation coefficients,and higher prediction accuracy compared to the measured shear wave velocity.This study can lay a solid foundation for reservoir prediction through seismic prestack inversion in the future.

关键词

长短期记忆网络/深度学习/横波速度预测/岩石物理建模

Key words

long short-term memory network/deep learning/prediction of shear wave velocity/rock physical modeling

分类

海洋科学

引用本文复制引用

杨学奇,徐乐意,陈兆明,李杰,李坤娟,董国辉,程学欢..基于长短期记忆网络的横波速度预测方法[J].海洋地质前沿,2025,41(12):80-87,8.

基金项目

中海石油(中国)有限公司"十四五"科技项目"陆缘裂谷盆地深层/超深层油气成藏条件与成藏机制研究"(KJGG2022-0403) (中国)

海洋地质前沿

OA北大核心

1009-2722

访问量0
|
下载量0
段落导航相关论文